A General Hypothesis for Ecological Change in Florida’s Springs

Matt Cohen
Ecohydrology Lab
Changes to Autotroph Community Structure
A (Brief) Case for the Insufficiency of Nitrogen

Silver Springs (1.4 ppm N-NO₃) Alexander Springs (0.05 ppm N-NO₃)

From Stevenson et al. 2004
Ecological condition of algae and nutrients in Florida Springs DEP Contract #WM858

Fall 2002 (closed circles) and Spring 2003 (triangles)

Data Sources:
- Odum (1957)
- Cohen et al. (2013)

Nifong et al. 2014, L&O

Lyngbya

In Silver River (8 km; > 30 ha of river bottom), gross autotroph N demand (0.13 g N m⁻² d⁻¹) is ~ 1.2% of available N supply (12 g m⁻² d⁻¹)

Data Sources:
- Cohen et al. 2018, SJRWMD
Ecological Change Hypotheses

Flow Rates
- Dissolved Oxygen
- Sediment Conditions
- Toxins
- Recreation

mediating factors

bottom up effects
- Algae Biomass
- SAV Biomass
- Nutrients
- Light

top down effects
- Grazers
Direct Flow Controls (Velocity-Scour Hypothesis)

Velocity Thresholds
Periphyton ~ 0.13 – 0.28 m/s
Macroalgae ~ 0.02 – 0.63 m/s
SAV ~ 0.02 – 0.61 m/s
Limitations of Velocity-Scour

- No evidence for macroalgal effect (despite strong effects on periphyton)
- Natural channels have (and always had) distributions of velocity

Kaplan et al. 2018, SJRWMD
Observational Evidence for Trophic Cascade

Algae ~ f(snails, flow, light)
Explains > 50% of algae variation

Snail Biomass (g m⁻²)
Algae Biomass (g m⁻²)
y = 2350x⁻1.592
R² = 0.38

Key Limitations:
- Gastropod biomass ≠ grazing
- Gastropods are isotopically distinct from mature macroalgal biomass (Nifong et al. 2018); they don’t eat it.
Further Experimental Evidence for Trophic Controls

- *In situ* enclosures with **low initial algae** @ 4 locations, 3 snail densities (zero, ambient, high)
- Snails effectively control algal biomass accrual

\[
y = 38.13e^{-0.009x} \\
R^2 = 0.93
\]
\[
y = 14.95e^{-0.008x} \\
R^2 = 0.85
\]
\[
y = 12.84e^{-0.005x} \\
R^2 = 0.55
\]
\[
y = 2.46e^{-0.003x} \\
R^2 = 0.64
\]
Algal State Resilience

• Replicate experiment at high initial algal density
 - 4 snail densities

• Fitted state stability model suggests algal state resilience, but with high site specificity

Liebowitz et al. (2020)
Press Disturbances in DO

• DO concentrations are relatively constant, vary with flow over climate cycles
 • Wet → High Q → High DO
 • Dry → Low Q → Low DO
 • Unknown effects of human BOD loading

• A long slow snail suffocation
 • Long lived, slow moving, late breeding
Florida’s Rivers have **two personalities** (clear, tannic)

During blackwater river floods, spring flow can reverse, sending high DOC, acid water into the aquifer

Why is this Happening?

- Declining aquifer levels (climate, consumptive use)
- Increasing storm responses (climate, land cover)
What Happens During a Reversal?

- Reduced flow velocity
- \downarrow Light \rightarrow bottleneck for plant competition
- \downarrow pH \rightarrow calcite weathering (snails)
- \uparrow Respiration of OM \rightarrow \downarrow DO (redox, grazers)
- **Pulse** vs. **press** low oxygen disturbance

![Graph showing benthic algal cover (%)](image1)

Hensley and Cohen 2017, *Freshwater Science*

![Graphs showing various environmental parameters](image2)

Brown et al. 2017, *Chemical Geology*
Hurricane Irma & Pulse Disturbance in Gilchrist Blue
Indirect Flow Controls #3 – SAV Growth

- Large spatial heterogeneity within sites.
- No differences between sites.
- Modest seasonality (summer peak)
- Mean Biomass Turnover ~ 3-4 yr⁻¹

Nearly identical models across sites.
 - ~50% variation explained
- Strong positive light effects
 - (more canopy, less growth).
- Strong positive redox effects
 - (more oxic, more growth).
- Strong negative P effects
 - (more P, less growth).

\[
\begin{align*}
\text{NO}_3 & \sim 0.14 \text{ mg/L} \\
\text{NO}_3 & \sim 1.31 \text{ mg/L}
\end{align*}
\]

\[
\begin{array}{c|c|c|c}
\text{Main effect} & \text{Silver River} & \text{Alexander Springs Creek} \\
& \text{Standardized slope} & \text{Standard error} & \text{t-value} & \text{Standardized slope} & \text{Standard error} & \text{t-value} \\
\hline
\text{Canopy} & -0.30 & 0.11 & -2.65 & -0.19 & 0.08 & -2.43 \\
\text{Redox @ 4.5 cm} & 0.35 & 0.17 & 2.07 & 0.47 & 0.11 & 4.16 \\
\text{PW_OrthoP} & -0.65 & 0.19 & -3.44 & -0.30 & 0.10 & -2.88 \\
\end{array}
\]
Redox Growth Controls

• Fine-grained sediments indicate low hyporheic exchange
 • Low delivery rate of electron acceptors

• Organic rich sediments indicate high electron acceptor demands
 • Rapid depletion of favorable options (DO and nitrate)

• Feedbacks
 • Vascular plant oxidation of the root zone (more plants, lower redox)

• Water column DO
 • Low in many springs, temporally dynamic
 • Spatial proximity of vastly different SAV condition in Ichetucknee
The Coherence of Flow Induced Changes

- **Climate**
- **Consumption**
- **Land Use Change**

Flow Reduction
- Increased Incidence of $u < u_{critical}$
- Reduced hyporheic exchange
- Decreasing dissolved oxygen
- Increased freq. duration of flow reversals

Storm Flow Increases
- Increased Algal Accumulation (reduced scour)
- Reduced SAV Growth (redox inhibition)
- Reduced Algal Grazing (trophic cascade)

Shifts in Primary Producer Community Structure

Hooking these mechanisms to the MFLs?
Synthesis and Knowledge Gaps

- Convergence of evidence on flow effects leads to a general hypothesis:

 Flow variation controls primary producer community structure via direct, indirect, and trophic cascade effects.

- Primary mechanisms
 - Direct scour
 - Redox controls for SAV
 - DO controls on algal grazing
 - Pulse disturbances (reversals) impact all

- Knowledge Gaps:
 - High frequency biology
 - Springs hydraulic typologies
 - Long term data

- Applications to the logic of environmental flows (MFLs)

Acknowledgements: Funders (SRWMD, SJRWMD, SWFWMD, NSF), Permissions (FDEP), Collaborators (Jim Heffernan, Bobby Hensley, Dina Liebowitz, Tom Frazer, Sean King, Nathan Reaver, Lily Kirk, David Kaplan, Paul Decker, Kenyon Watkins, Larry Korhnak, Rachel Nifong, Jenny McBride, Joelle Laing, Greg Owen, Jon Martin, Jason Evans)