Spatiotemporal Machine Learning: A Couple of Examples in Hydrology

Zhe Jiang (zhe.jiang@ufl.edu) Dept. of Computer & Info. Sci. & Eng. Center of Coastal Solutions University of Florida <u>www.jiangteam.org</u>

Outline

- Overview of Spatiotemporal Machine Learning
- Example 1: Terrain-aware flood mapping
- Example 2: National Hydrography Dataset refinement
- Summary

Societal Needs

- The revolution of Artificial Intelligence and Machine Learning
 - Computer vision, natural language processing, games
 - Driven by big data, computational hardware, models/algorithms
- Can AI achieve the same level of success in Geo-domains?

National water resource management (Source: NOAA, NBC news)

Agriculture and food security (Source: USDA, foodbusinessnews)

Coastal hazards (storm surge, algal bloom) Mitigation and adaptation to climate change (Source: apnews, NOAA) (Source: NASA)

• Spatio-temporal auto-correlation, teleconnections, heterogeneity

- Spatio-temporal auto-correlation, teleconnections, heterogeneity
- Multiple spatial, temporal, spectral resolutions
- Diverse noise, missing data and gaps

Landsat with cloud mask

- Spatio-temporal auto-correlation, teleconnections, heterogeneity
- Multiple spatial, temporal, spectral resolutions
- Diverse noise, missing data and gaps
- Domain physics and constraints (e.g., terrain, topography)

(Image source: amerikaplus.nl)

- Spatio-temporal auto-correlation, teleconnections, heterogeneity
- Multiple spatial, temporal, spectral resolutions
- Diverse noise, missing data and gaps
- Domain physics and constraints (e.g., terrain, topography)
- Paucity of ground truth

USGS field crew during a Colorado flood (Source: USGS)

- Spatio-temporal auto-correlation, teleconnections, heterogeneity
- Multiple spatial, temporal, spectral resolutions
- Diverse noise, missing data and gaps
- Domain physics and constraints (e.g., terrain, topography)
- Paucity of ground truth

THE NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT STRATEGIC PLAN: 2019 UPDATE

> A Report by the SELECT COMMITTEE ON ARTIFICIAL INTELLIGENCE of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL

> > JUNE 2019

AI for spatial and spatiotemporal data listed as **open research question.**

Many AI applications are interdisciplinary in nature and make use of heterogeneous data. Further investigation of multimodality machine learning is needed to enable knowledge discovery from a wide variety of different types of data (e.g., discrete, continuous, text, spatial, temporal, spatio-temporal, graphs). AI investigators must determine the amount of data needed for training and to properly

Topography-aware Flood Mapping from Satellite Imagery

- Spatial structure representation of terrains
 - Spatial graph (reverse tree): partial order class dependency
 - Focus on tree (not Directed Acyclic Graph) for simplicity and efficiency

Tree construction based on *H. Carr et al. 2003,* with customization

(c) Region-wise flow trees (ongoing with federal agencies)

Result Visualization

High-resolution aerial image

(Hurricane Matthew, 2016)

Digital elevation model

Random forest

Gradient boosted model

Deep learning (U-Net)

Hidden Markov tree

Analysis:

- Non-spatial classifier performed poorly (significant false negatives)
- U-Net performed better but still confused in highly vegetated areas
- HMT performed the best

Note: permanent water can be further removed to show flooded area

HMT in A Real-World Riverine Flood

• Collaboration with USGS, NGA, NOAA NWC

Worldview image in Omaha, Nebraska, 2019

Deter using bactwood energy latkov trees

Analysis: integrating domain knowledge (topography constraint) enhances machine learning performance

National Hydrography Dataset Refinement

- National Hydrography Dataset (NHD)
 - Widely used for surface water body features
 - With high-resolution remote sensing data, USGS is refining NHD to a higher resolution

National Hydrography Dataset (NHD) refinement

Weakly Supervised Learning for National Hydrography Dataset (NHD) Refinement

Problem Definition

Approach: Weakly supervised spatial learning

Evaluation

Method	Class	Confusion Matrix		Precision	Recall	F1 score
U-Net	Non-stream	9818176	79801	0.99	0.99	0.99
	Stream	79672	57551	0.39	0.44	0.42
U-Net with self-training	Non-stream	9747792	150185	1.00	0.98	0.99
	Stream	48750	88473	0.37	0.64	0.47
Our Method	Non-stream	9867813	30164	0.99	0.99	0.99
	Stream	57614	79609	0.71	0.58	0.64

Evaluation: A Case Study and Interpretation

- Initially:
 - Stream predictions are wide
 - Due to imperfect polyline labels
- After iterations:
 - Stream predictions narrower
 - Refined line converges

The proposed method successfully refines vector labels with registration errors

Conclusion and Future Work

- Spatiotemporal machine learning is important but technically challenging
- Addressing the challenges motivate new ML research

Future Directions

- Integrating AI and physics (process-based model, numerical model)
- Fusing multiple data sources (remote sensor, in-situ sensors, "social" sensor or citizen science, simulation data)
- Looking for collaborations with domain scientists!