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Can we improve remote sensing detection of red tide by
considering recent spatiotemporal in situ samples?
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Sensing Data

We use MODIS-Aqua level 2 data for prediction

The MODIS-Aqua sensor was chosen as it has been flying since
2002 so we have a long time series of data to consider for
learning

The MODIS-Aqua products have a 1 km spatial pixel resolution
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Pairing of In Situ and Remote Sensing

For each sample in the in situdataset, it was paired with a
remote sensing pixel if:

m There was an image available from the same date as the sample

= And the nearest pixel to the sample was within 1km and was not
masked out due to cloud cover

This gives a dataset of 11655 pixels with in situred tide
measurement.
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Pairing of In Situ and Remote Sensing
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Feature Selection

Selected Features

Features were selected using par
recursive feature elimination (RFE)

Kd490
This method iteratively trains a Chlor,
classifier and removes the poorest Rrs
performing feature according to 443
some metric Rrs g
Rrsygq
RFE was done using random forest nFLH
classification with the gini
coefficient being used to score Features selected according to RFE

features
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Neural Net Architecture

The network architecture is
shown on the right, it’'s a fully
connected net with ReL.U
activations on the first 2 layers
and softmax activation on the
final layer

This relatively shallow network
was chosen as a result of the
training set size Neural Network Architecture
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Machine Learning

Neural networks were trained using the paired remote sensing/in situ
data.

The problem was set up as a two class classification/detection problem,
with one class for samples with 100,000 cells/L or less (background,
very low, and low in the FWC definitions), and the other class for
samples over 100,000 cells/L (medium and high in the FWC definitions)

All experiments were cross-validated by dividing the data into different
train/test splits according to year
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Weighted K-Nearest Neighbor Predictions

In addition to the remote sensing Red Tide KNN 10/10/2016
information, we could consider
information from recent ground
samples

Weighted KNN predicts the red tide
concentration value at a test location
and time according to a weighted
summation of the red tide
concentrations from the recent Weighted-KNN Prediction with Recent
past/local area Ground Truth
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Weighted KNN Predictions
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physical dist = \/(lat — lat; )?+(lon — lon; )?
spatiotemporal dist = physical dist + 3 * (date — date;)
1

inverse dist =

spatiotemporal dist
inverse dist;

Y.; inverse dist;

estimated concentrations = z weight; * logConc;

l

weight; =
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ROC Results - KNN Estimation

KNN Comparison
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ROC Results - Comparison

Comparison with Standard Features
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F u t u re D i re Cti O n S Particles at t = 2018-08-01T00:00:00.000000000
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The distance measure used in the 2801
KNN approach is a crude estimate of
the relationship between locations
in time and space
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We are considering building in 26.5
current information to better
understand the influence of past 26.0 1

samples on prediction
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Particle Tracking Simulation for 08/2018
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