Effects of human-facilitated bivalve populations on energy and nitrogen flow in coastal and marine ecosystems

Annie Murphy

February 22, 2022

annie@inspireenvironmental.com

INSPIRE Environmental 513 Broadway, Suite 314, Newport, RI 02840 www.INSPIREenvironmental.com Tel: 401.849.9236

Bivalves and Benthic-Pelagic Coupling

Top-down vs. Bottom-up depends on:

- Environmental context
- Bivalve physiology, density
- Microbial community

Nitrogen and Carbon Transformers

How does clam aquaculture influence nitrogen cycling and microbial N removal?

Can clam aquaculture influence ecosystem-scale energy flow?

How may epifaunal growth on novel surfaces associated with offshore wind development influence ecosystem-scale energy flow?

Which pathway is dominant?

Hard Clam Aquaculture

Chesapeake Bay, Virginia

Why do clam beds in Cherrystone favor DNRA over DNF? **Controls:**

Why do clam beds in Cherrystone favor DNRA over DNF? Controls:

• $[NO_3^-]$ water column: $0 - 0.5 \mu M$

Why do clam beds in Cherrystone favor DNRA over DNF?

Dependent on environment

Controls:

- $[NO_3^{-}]$ water column: $0 0.5 \mu M$
- Low O₂ and High Sulfide
- Carbon quality and quantity

How does clam aquaculture influence nitrogen cycling and microbial N removal? Increase NO₃⁻ respiration; DNRA > DNF

Can clam aquaculture influence ecosystem-scale energy flow?

How may epifaunal growth on novel surfaces associated with offshore wind development influence ecosystem-scale energy flow?

Ecosystem-scale Energy Flow Cherrystone Inlet, VA

- I. Estimate the clam population and size distribution
- 2. Model clam physiological rates
- 3. Scale seasonal benthic rates (direct measurements)

Top-Down Effects

- 7 44% of the total Inlet volume daily
- ~2 15 days to filter entire Inlet

Murphy et al. 2016

- 7 44% of the total Inlet volume daily
- ~2 15 days to filter entire Inlet
- Capacity to ingest >100% of internal phytoplankton production
 - Not entirely accessible

Mg N yr⁻¹ dissolved _____ particulate

Murphy et al. 2016

- Clams filter C and N from a wide area and deliver it to Cherrystone sediments
- N regeneration > N harvested
- Clams support macroalgal production
- Macroalgal harvest would remove a large amount of N

Murphy et al. 2016

How does clam aquaculture influence nitrogen cycling and microbial N removal? Increase NO₃⁻ respiration; DNRA > DNF

 Can clam aquaculture influence ecosystem-scale energy flow?
Potential for bottom-up control; (phytoplankton to macroalgae)

How may epifaunal growth on novel surfaces associated with offshore wind development influence ecosystem-scale energy flow?

VIRONMENTA

Offshore Wind Development

30 gigawatts by 2030 = 2,500 turbines (12MW)

= 3,750,000 m² of introduced novel habitat [~525 football fields]

Artificial Reef Effect

Novel structures increase basal trophic level production

Organic enrichment

Modelling studies

- TOC flux to the sediments increased (50% within 5 km)
- TOC flux decreases further away from the monopiles
- Increased total mineralization rates (\sim 30%)
- Buildup of OC in sediments (increase by $\sim 10\%$)
- Increase in anoxic metabolic rates
- DNF increase by ~2-3%

frontiers in Marine Science

21

ORIGINAL RESEARCH

Offshore Wind Farm Footprint on Organic and Mineral Particle Flux to the Bottom

Evgeny Ivanov^{1*}, Arthur Capet¹, Emil De Borger^{2,3}, Steven Degraer³, Eric J. M. Delhez⁴, Karline Soetaert², Jan Vanaverbeke⁵ and Marilaure Grégoire¹

¹ Modelling for Aquatic Systems, Department of Astrophysics, Geophysics and Oceanography, University of Liège, Liège Belgium, 2 Royal Netherlands Institute of Sea Research (NIOZ), Department of Estuarine and Delta Systems, Utrecht University, Yerseke, Netherlands, ³ Marine Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium, ⁴ Department of Aerospace and Mechanics, University of Liège, Liège, Belgium, ⁵ The Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium

Offshore Windfarm Footprint of Sediment Organic Matter Mineralization Processes

Emil De Borger^{1,2*}, Evgeny Ivanov³, Arthur Capet³, Ulrike Braeckman¹, Jan Vanaverbeke^{1,4}, Marilaure Grégoire³ and Karline Soetaert^{1,2}

¹ Department of Biology, Marine Biology Research Group, Ghent University, Ghent, Belgium, ² Department of Estuarine and Delta Systems, Royal Netherlands Institute of Sea Research (NIOZ), Yerseke, Netherlands, 3 Modeling for Aquatic SysTems (MAST), University of Liège, Liège, Belgium, ⁴ Operational Directorate Natural Environment, Marine Ecology and Management, Royal Belgian Institute of Natural Sciences, Brussels, Belgium

- High resolution underwater imagery Photogrammetric models to estimate biomass
- Measure changes in benthic functioning of the soft sediments at the base of the turbines
- Link with fish data to explore ecosystem connectivity shifts (trophic dynamics)

