Decadal Changes In Nitrogen And Phosphorus Species Along The Lake Worth Lagoon In South Florida

Mohsen Tootoonchi, Andres F. Rodriguez and Samira H. Daroub

Everglades Research and Education Center (EREC)

Soil and Water Sciences Department

Institute of Food and Agricultural Sciences, University of Florida

Water Institute 2022, Complex Challenges, Integrated Solutions

The Lake Worth Lagoon Estuary (LWL)

- Originally a freshwater lake that received waters from the Everglades.
- Two inlets were constructed in the early 20th Century giving the lagoon brackish conditions.
- The LWL provides habitat, protects shorelines, and supports residential and touristic activities in South Florida.
- The West Palm Beach-C51 (C51) canal accounts for 50% of freshwater discharges into LWL.

Photo credits: Historical Society of Palm Beach County

Image from https://discover.pbcgov.org/

The West Palm Beach – C51 canal

- The WPB and C51 canals connect Lake Okeechobee with LWL.
- The WPB and C51 canals go through the Everglades Agricultural Area (EAA) and urbanized areas before it reaches LWL.
- Changes in sediment and nutrient influx from freshwater discharges impact LWL.

• Changes in N, P, and N:P ratios can affect limiting nutrients, trigger algal blooms, and impact LWL biodiversity.

Objectives

1) To determine decadal trends of N and P species along the WPB and C51 canals to LWL system (2009 to 2019).

2) To determine differences in N and P species between sections along the WPB and C51 canals.

Methods

Four water quality stations selected; 2009 to 2019 period of study.

Photo credit: South Florida Water Management District

S352

Image from https://palmbeach.floridaweekly.com

Image from https://discover.pbcgov.org/

LWL

Photo credit: South Florida Water Management District

Data

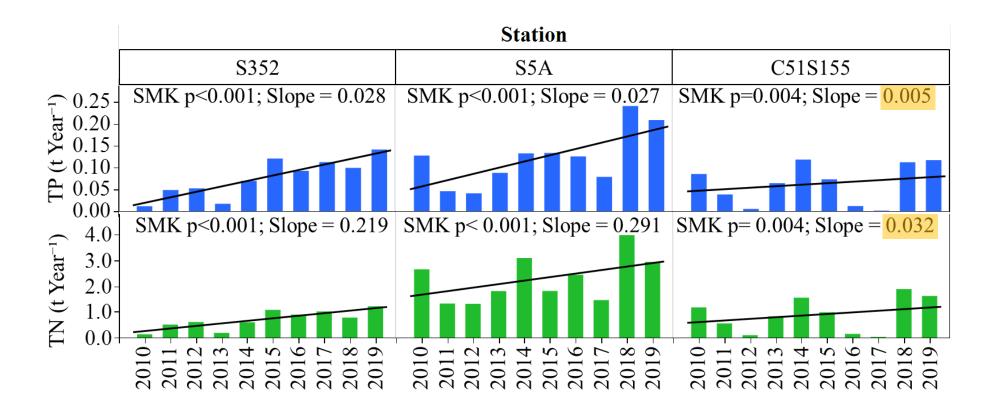
- Data on water quality parameters (WQ) and flow obtained from DBHYDRO database of the South Florida Water Management District.
- Rainfall data obtained from stations in the vicinity of selected stations.

water quality parameters						
Parameter	Abbreviation					
Total phosphorus	ТР					
Orthophosphate	OP					
Particulate + dissolved organic phosphorus	PP+DOP					
Total nitrogen	TN					
Nitrate-N + Nitrite-N	NO ₃ +NO ₂					
Ammonia-N	NH ₃					
Organic nitrogen	ON					
Total suspended solids	TSS					

Statistics

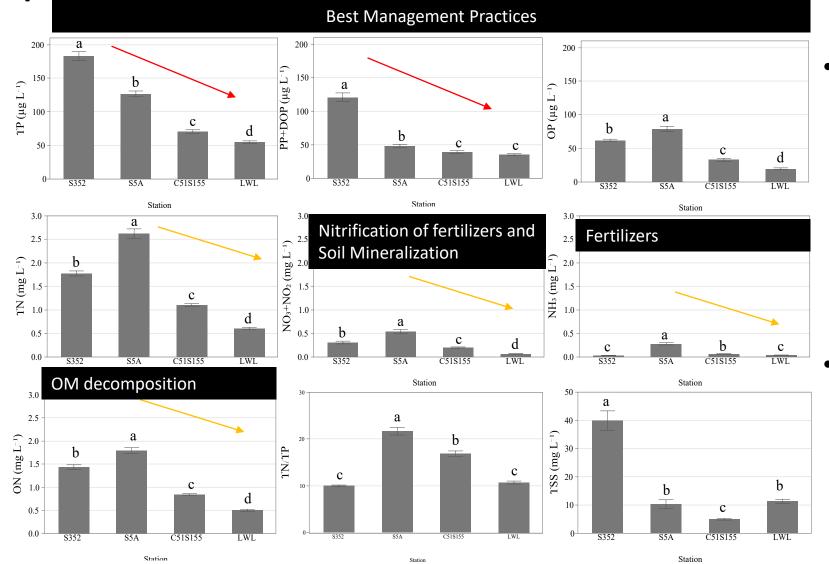
- Seasonal Mann Kendall and Sen slope used to determine trends on WQ parameters.
- Spearman correlations used to establish correlations between rainfall, flow and WQ parameters.
- Nonparametric pairwise comparisons used to compare WQ parameters between selected stations.

Results and discussion


Trend analysis

Station	ТР	PP+DOP	OP	TN	NO ₃ +NO ₂	NH ₃	ON	TN:TP	TSS	Flow
S352	+	+	NS	NS	+	-	NS	-	+	+
S5A	+	+	NS	-	-	-	-	-	NS	+
C51S155	+	NS	+	NS	+	+	NS	-	NS	+
LWL	+	+	NS	+	+	+	+	+	+	NA

(+) increasing trend; (-) decreasing trend; NS not significant trend; NA no trend analysis done


- Predominantly increasing trends of P forms' concentrations partially due to legacy P released from Lake Okeechobee's sediments into the water column (Reddy et al., 2011).
- Urbanization along areas of the C51 canal can partly explain increasing trends.

- Increasing concentrations correspond to increasing loads.
- Increasing loads can be explained by larger discharges from Lake Okeechobee into the WPB and C51 canals in recent years (increasing flow).
- Increasing trends at station C51S155 into LWL are between 5 and 9 times lower than increases at other stations, possibly due to assimilation, precipitation and denitrification reactions.

Spatial differences

- Reduction in TP and PP+DOP concentrations from Lake Okeechobee to LWL due to <u>assimilation and</u> <u>precipitation reactions</u>. Sediment and carbonate layers previously shown to act as a sink for P at the WPB-C51 canal (Das et al., 2012).
- Reduction of N forms from station S5A to LWL possibly due to <u>plants</u> <u>and microbes'</u> <u>assimilation and</u> <u>denitrification</u>.

Correlations

Flow										
Station	ТР	PP+DOP	OP	TN	NO ₃ +NO ₂	NH ₃	ON	TN:TP	TSS	Rainfall
S352	0.23 *	0.27 **	-0.04	0.04	0.03	-0.28 **	0.09	-0.32 ***	0.19 *	-0.32 ***
S5A	0.73 ***	0.37 ***	0.52 ***	0.33 ***	0.16	0.29 **	0.31 ***	-0.24 **	0.17	0.62 ***
C51S155	0.53 ***	0.34 ***	0.41 ***	0.57 ***	0.21 *	0.53 ***	0.58 ***	-0.24 *	0.37 **	0.53 ***
Rainfall										
Station	ТР	PP+DOP	OP	TN	NO ₃ +NO ₂	NH ₃	ON	TN:TP	TSS	Flow
S352	-0.03	-0.18	0.20 *	-0.15	-0.22 *	0.41 ***	-0.18	-0.13	-0.17	-0.32 ***
S5A	0.46 ***	0.11	0.37 ***	0.47 ***	0.23 *	0.45 ***	0.47 ***	0.13	0.01	0.62 ***
C51S155	0.21 *	0.35 ***	0.01	0	-0.34 **	0.06	0.30 **	-0.27 **	0.24	0.53 ***
LWL	0.36 ***	0.18	0.27 **	0.46 ***	0.20	0.30 **	0.47 ***	0.21	-0.16	N/A

- Strong positive correlations with flow at stations S5A and C51S155 (characteristic of diffuse, non-point sources).
- Negative flow correlations and weak correlations with rainfall show water management decisions along the WPB-C51 canal.
- Negative correlations between TN:TP and flow show higher P than N mobility under strong flow events.

Conclusions

- Increasing trends in TP and TN loads found at the WPB-C51 canal are possibly due to higher nutrient concentrations, urbanization, and larger discharges from Lake Okeechobee in recent years.
- **TP and TN** concentrations **progressively declined** along the path from Lake Okeechobee (**WPB-C51 canals**) to **LWL**.
- Average TP concentration in water reaching the LWL was higher than the numeric criteria (49 μg L⁻¹) established by the state of Florida.
- Overall, increasing trends in TP and TN loads along the WPB-C51 canal, emphasize the need to implement strategies in order to minimize nutrient inputs into LWL.

References

- Das, J., Daroub, S. H., Bhadha, J. H., Lang, T. A., & Josan, M. (2012). Phosphorus release and equilibrium dynamics of canal sediments within the Everglades Agricultural Area, Florida. *Water, Air, & Soil Pollution, 223*(6), 2865-2879.
- Kramer, B. J., Davis, T. W., Meyer, K. A., Rosen, B. H., Goleski, J. A., Dick, G. J., ... & Gobler, C. J. (2018). Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event. *PLoS One*, *13*(5), e0196278.
- Reddy, K. R., Newman, S., Osborne, T. Z., White, J. R., & Fitz, H. C. (2011). Phosphorous cycling in the greater Everglades ecosystem: legacy phosphorous implications for management and restoration. Critical Reviews in Environmental Science and Technology, 41(S1), 149-186.

Questions?

m.tootoonchi@ufl.edu

