Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater

Jinsheng Huang Advisor: Dr. Bin Gao Agricultural & Biological Engineering University of Florida February 2022

Background

- Sulfonamides
- Disease treatment
- Low metabolization

Potential sources

- Wastewater
- Animal excretion

Drawbacks

- Mobility & biodegradation (S&GW&DW)
- Carcinogen risk
- Skin allergic reactions
- Antibiotic resistance genes (ARGs)

https://waterandhealth.org/safe-drinking-water/drinking-water/antibiotic-resistantbacteria-and-genes-in-wastewater-and-drinking-water/

Motivation

Removal

Sulfonamide antibiotics

Treatment methods

- R&O, ion exchange
- High capital cost
- Limited operation

Adsorption

- Convenient
- Affordable
- Environment-friendly

Adsorbents

• Biochar

AGRICULTURAL & BIOLOGICAL

ENGINEERING

- Low cost (5 times cheaper than activated carbon)
- A black carbon derived from thermal conversion of biomass
- Environmental application

Wang, Jianlong, and Shizong Wang. Journal of Cleaner Production 227 (2019): 1002-1022.

Biochar Modification

• Why

- Depends on feedstocks
- Unmodified

Purpose

- Physiochemical.
- Functionality
- SAs & FGs

Wang, Jianlong, and Shizong Wang. Journal of Cleaner Production 227 (2019): 1002-1022.

- Modification
 - Chemical, biological, and physical pretreatment and post-treatment
 - Harmful by-product pollution

Methodology

Ball milling

- Mechanochemical approach
- Top-down nano-synthesis method

Lyu, H., et al., ACS Sustainable Chemistry & Engineering, 5.11 (2017) Kumar, Manish, et al. Bioresource technology (2020): 123613.

Methodology

- Sulfonamides
 - Sulfamethoxazole (SMX)
 - Sulfapyridine (SPY)
- Initial assessment
- Batch system
 - Kinetic
 - Isotherm
- Solution

ENGINEERING

- DI water
- Wastewater

Wastewater Samples

Information

- 2nd treated
- WWTPs @ UF
- Physiochemical property

Sample preparation

- WW spiked with SMX/SPY
- 10 ppm

ENGINEERING

Degradation

Parameters	Range	Mean
TOC	4.08–9.40 mg/L	$7.11\pm1.46~mg/L$
Na^+	54.18–76.99 mg/L	$61.55\pm5.00\ mg/L$
K^+	11.94–35.82 mg/L	$24.53\pm9.54~mg/L$
Ca ²⁺	44.23-53.26 mg/L	$47.81\pm2.61~mg/L$
Mg^{2+}	28.35–44.92 mg/L	$31.37\pm4.21\ mg/L$
NH4 ⁺ -N	0.04–0.81 mg/L	$0.22\pm0.29~mg/L$
NO ₃ ⁻ -N	0.35–2.68 mg/L	$1.35\pm1.02~mg/L$
Cl^-	84.97–120.93 mg/L	$103.41 \pm 14.70 \text{ mg/L}$
Total P	0.90-6.40 mg/L	$2.68\pm1.60~mg/L$
рН	7.14-8.16	7.61 ± 0.34

Zheng, Yulin, et al. Chemical Engineering Journal 362 (2019): 460-468.

Initial Assessment

AGRICULTURAL & BIOLOGICAL ENGINEERING

2022 UF Water Institute Symposium

AGRICULTURAL & BIOLOGICAL

ENGINEERING

Zeta & pH & Speciation

Speciation table

et al., Chemosphere 90.10 (2013): 2597-2605.

Batch Sorption in Water (pH 6)

AGRICULTURAL & BIOLOGICAL 2022 UF Water Institute Symposium

ENGINEERING

Sustainable

Batch Sorption in Wastewater (~pH 7.6)

Parameters	Range	Mean
TOC	4.08-9.40 mg/L	$7.11\pm1.46~mg/L$
Na^+	54.18–76.99 mg/L	$61.55\pm5.00~mg/L$
K^+	11.94–35.82 mg/L	$24.53\pm9.54~mg/L$
Ca^{2+}	44.23–53.26 mg/L	$47.81\pm2.61~mg/L$
Mg^{2+}	28.35-44.92 mg/L	$31.37\pm4.21\ mg/L$
NH4 ⁺ -N	0.04–0.81 mg/L	$0.22\pm0.29~mg/L$
NO ₃ ⁻ -N	0.35–2.68 mg/L	$1.35\pm1.02\ mg/L$
Cl	84.97–120.93 mg/L	$103.41 \pm 14.70 \ mg/L$
Total P	0.90-6.40 mg/L	$2.68\pm1.60\ mg/L$
рН	7.14-8.16	7.61 ± 0.34

• Isotherm

AGRICULTURAL & BIOLOGICAL

2022 UF Water Institute Symposium

Sustainable Water Resources

Conclusion

- Ball milling greatly enhanced the ability of biochar to sorb SMX and SPY in water (pH of 6.0). For each biomass, 450 °C ball milled biochar showed the best removal efficiency.
- Solution pH strongly affected sulfonamide adsorption through variations in electrostatic interaction
- In wastewater, the 450 °C ball milled biochar still performed well, especially for SPY adsorption. Due to the greater pH of wastewater, SMX sorption capacity of BM-HC450 dramatically declined but still in a considerable amount.

Future Works

- Regeneration & stability
- Fixed bed column
 - Large-scale operations of sulfa-treatment in wastewater
 - Dosage & Flow rate

ENGINEERING

Model & Breakthrough

Reference

- Huang, Jinsheng, et al. "Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater." Environmental Pollution 258 (2020): 113809.
- Kumar, Manish, et al. "Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials." Bioresource technology (2020): 123613.
- Lyu, Honghong, et al. "Ball-milled carbon nanomaterials for energy and environmental applications." ACS Sustainable Chemistry & Engineering 5.11 (2017): 9568-9585.
- Wang, Jianlong, and Shizong Wang. "Preparation, modification and environmental application of biochar: a review." Journal of Cleaner Production 227 (2019): 1002-1022.
- Tian, Yuan, et al. "Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns." Chemosphere 90.10 (2013): 2597-2605.
- Liu, Ni, et al. "Synthesis a graphene-like magnetic biochar by potassium ferrate for 17β-estradiol removal: Effects of Al2O3 nanoparticles and microplastics." Science of The Total Environment 715 (2020): 136723.
- Zheng, Yulin, et al. "Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar." Chemical Engineering Journal 362 (2019): 460-468.

Ball milled Pristine Surface area Surface area Biochar (m^2/g) biochar (m^2/g) HC300 0.8 BM-HC300 5.6 9.8 HC450 BM-HC450 309 221 HC600 BM-HC600 270 **BB300** 2 **BM-BB300** 8.3 4.7 **BB450 BM-BB450** 299 **BB600** 59 BM-BB600 276 BG300 0 BM-BG300 10.8 51 BG450 BM-BG450 331 BG600 359 BM-BG600 364

Table S3. Specific surface area of biochar samples used in this study (Lyu et al., 2018).

Sustainable Water Resources Complex Challenges, Integrated Solutions

