

Florida Farmers' Multi-BMPs Adoption: A Survey Analysis

Dr. Sawssan Boufous*

Dr. Tara Wade*

(*) Southwest Florida Research and Education Center/IFAS; University of Florida

An Equal Opportunity Institution.

Motivation

Using agricultural Best Management Practices (BMPs) can reduce the negative impact on the environment (Frydenborg and Frydenborg 2016), and are thought to be more beneficial when adopted simultaneously (Khana, 2009).

Research Objectives

Main Research Questions

What are the factors of multi-BMPs adoption?

Is there any complementarity relationship among: Cover Crops (CC), Controlled Release Fertilizer (CRF), Calibrate Fertilizer Equipment (CFE), and Irrigation Scheduling Tools (IST)?

Research Objectives

Improve water quality through more BMP use Improve conservation policy design

Reduce costs of farmers' adoption and education

Hypotheses

- H_{01} : Multi BMPs adoption's factors are similar to single BMP adoption's factors
- H_{02} : Multi BMPs adoption depends on the type of the grown crops
- H_{03} : CRF & CFE are complements
- *H*₀₄: CRF & CC are complements
- H_{05} : CRF & IST are complements
- H_{06} : CFE & IST are complements
- H_{07} : CFE & CC are complements
- H_{08} : CC & IST are complements

Literature Review

Single-BMP Adoption (Baumgart-Getz et al., 2012)

Multi-BMPs Adoption

UNIVERSITY of FLORIDA

Literature Review

Complementarity in agricultural practices:

Holley et al., 2020: Prescribed grazing practices & pasture management Perry et al., 2016: Conservation tillage & glyphosate tolerant soybeans Rusle, 2013: Contour-strip & conservation tillage

Reeves, 1994: Cover crops & conservation tillage Few studies investigated complementarity among agricultural practices

Methods & Procedures

• Adoption Factors Model

• Assuming that each farmer has a sole alternative among BMP bundles options (Y_i) , and their choices are affected by factor X.

• The MNL model specifies the following relationship between the probability of opting for Y_i and set of explanatory variables X (Green, 2011):

$$Pr(Y_i = j) = \frac{e^{\beta_{jX_i}^i}}{\sum_{j=0}^n e^{\beta_{jX_i}^i}} (1),$$

Where:

- **Y**: the latent variable on the observed choice of alternative j of BMP adoption by the i^{th} individual,
- $j \in [0;n]$, with 0 "non-adopter", 1"BMP bundle 1", etc.
- P_{ij} : the probability that the i^{th} individual chooses alternative j;
- X_i : independent variables;
- β_i : vector of coefficients on each X.

• To interpret the effects of explanatory variables on the probabilities, marginal effects are usually derived as (Green, 2011):

$$\delta_j = \frac{\partial P_j}{\partial X_i} = P_j \left[\beta_j - \sum_{k=0}^j P_k \beta_k \right] = P_j (\beta_j - \overline{\beta})$$
(2)

• The model is estimated using the maximum likelihood method.

Methods & Procedures

• Complementarity Model

Cassiman and Veuglers (2006) consider that two activities are complements when three conditions are satisfied:

(c) Excluded variable: an increase in X_i increases only A_1 directly, because of complementarity X_i should increase also A_2 indirectly

(b) Correlation: the activities A_1 and A_2 need to be positively correlated

In presence of an adoption data, the testing takes part through a bivariate Probit model as mentioned in condition (c), regressing the practices BMP_1 , BMP_2 on a given exogenous variables X_i :

 $\begin{cases} BMP_1 = X_1\alpha_1 + \varepsilon_1^i, BMP_1^i = 1 \ if BMP_1 > 0, 0 \ otherwise, \\ BMP_2 = X_2\alpha_2 + \varepsilon_2^i, \ BMP_2^i = 1 \ if BMP_2 > 0, 0 \ otherwise, \end{cases}$ (3)

- Where:
- α is the parameter estimate of the exogenous variable X_i ,
- ε is the error terms

Under complementarity, X_i that affects only one of the two activities directly, should be significant in both regressions (3) and (4), because complementarity induces an indirect effect from this variable on the adoption of the other activity.

Methods & Procedures

• Complementarity Model

• The estimation of the model by maximum likelihood is then given by:

 $Pr(BMP_1, BMP_2|X_1, X_2, z_1, z_2) = B[q_1a_1, q_2a_2, q_1q_2\rho], BMP_j = 0, 1 \text{ for } j = 1, 2 \quad (5);$

Where:
$$q_j = 2BMP_j - 1 \& a_j = \frac{\alpha'_j x_j}{\exp(\gamma'_j z_j)} \& B(.)$$
 is the bivariate normal CDF. The log-likelihood to be maximized is :

 $\sum_{i} ln Pr(BMP_1, BMP_2)$ (6).

Thus, for our study, six bivariate probit models were estimated :

Data

• The survey was administered online by the Florida Survey Research Center in March 2018. UF/IFAS extension agents, grower associations, and producer magazines distributed the survey link and access code. The final sample: N=192

Results & Discussion

• 1. Adoption Statistics

		Single BMP	Two BMPs	Three BMPs	Four BMPs
Growers %		34%	26%	26%	13%
CC	IST	CRF	CFE	Acres%	Growers%
		Х	Х	18.59%	7%
Х		Х		0.001%	1%
	Х	Х		0.41%	5%
	Х		Х	0.58%	10.41%
Х	Х			21.42%	1.04%
Х			Х	0.04%	1.6%
Х		Х	Х	0.25%	5.21%
	Х	Х	Х	17.19%	17.19%
Х	Х	Х		0.12%	0.05%
Х	Х		Х	0.001%	3.125%
Х	Х	Х	Х	0.38%	12%

Results & Discussion

• 1. Descriptive Statistics

Other & Independent variables	Obs	Mean (std.err)	Min	Max
Ownership	192	<mark>0.875</mark> (0.3315835)	0	1
Multi-BMP Adoption	192	<mark>0.651</mark> (0.4778869)	0	1
Total Acreage	192	1384 (5369.065)	0	48000
Number of Locations	192	3.759 (10.69159)	0	40
Number of Crops	192	3.827 (9.890798)	0	55

GROWERS BY CROP TYPE %

Doculto & Discussion			Margins	dy/dx		
Results & Discussion		(Delta-method std. errors)				
	Adoption	Single adoption	Double-BMPS	Triple-BMPs	Quadruple-BMPs	
	Variables	(Base outcome)	ado.	ado.	ado.	
		0.0005	0.0032	0.0004	-0.0042	
Results & Discussion 2. Multi-BMPs Adoption Facto	Nb. of locations	(0.0037)	(0.0036)	(0.0029)	(0.0034)	
		0.1232	-0.0591	<mark>-0.1938*</mark>	0.1297	
	Ownersnip	(0.1182)	(0.1040)	(0.0865)	(0.1137)	
		<mark>-0.1826*</mark>	0.0910	0.0348	0.0567	
2. Multi-BMPs Adoption Factors	Agronomic produces	(0.0733)	(0.0776)	(0.0787)	(0.0592)	
	Total acreage	0.00004	0.000009	-0.000006	-0.000007	
		(0.0000)	(0.0000)	(0.0000)	(0.0000)	
	Vegetables	-0.2464**	0.0502	0.0960	0.1002*	
		(0.0809)	(0.0907)	(0.0807)	(0.0584)	
		-0.2724**	0.1308	0.0143	0.1273*	
	Fruits	(0.0871)	(0.0847)	(0.0864)	(0.0592)	
	NH of more success	0.0035	-0.0172	0.0063	<mark>0.0075*</mark>	
	ND of grown crops	(0.0065)	(0.0129)	(0.0060)	(0.0031)	
	Citama	-0.4744***	<mark>0.1653*</mark>	0.2597***	0.0494	
	Citrus	(0.0895)	(0.0724)	(0.0649)	(0.0607)	

Results & Discussion

3. Complementarity: Bi-probit analysis

Log Likelihood Wald Chi2 (8) Pr>Chi2				-234.36 12.03 0.1498		
			Coeff.			
			(Std.err)			
			-0.00002			
	Total acreage		(0.00003)			
			-0.019			
	Nb. locations		(0.014)			
Cover Crops (CC)			0.396			
	Ownership		(0.351)			
			0.029*			
	Nb of grown crops		(0.012)			
		-0.957**				
	Constant	(0.345)				
		-0.0000007				
	Total acreage	(0.00001)				
			-0.01			
	Nb. locations	(0.013)				
Irrigation Schedulin	g	-0.157				
Tools (IST)	Ownership		(0.311)			
			0.065*			
	Nb of grown crops	(0.033)				
			0.152			
	Constant		(0.320)			
Arthrho		0.114	0.128	0.372		
Rho		0.114	0.126			
LR test of Rho	0.000					
Chi 2 (1)	0.798					
Pr>Chi2	0.372					

Results Summary

- Multi-BMPs adoption decision depends on the nature of the grown crops
- Vegetables, fruits, citrus, and agronomic producers are adopting more than one BMP compared to other crops growers
- CC & IST are complements

Conclusion and suggestions

Conclusion

- RH₀₁: Multi BMP adoption's factors are not similar to single – BMP adoption's factors
- FRH_{02} : Multi BMPs adoption depends on the type of the grown crops
- RH₀₃: CRF & CFE are not complements
- RH_{04} : CRF & CC are not complements
- RH_{05} : CRF & IST are not complements
- *RH*₀₆: CFE & IST are complements
- RH_{07} : CFE & CC are complements
- FRH₀₇: CC & IST are complements

Research Lacks

Relatively small data No demographic data

Further Research

- Extend this research to other states & other BMPs
- Explore complementarity among other BMPs

Multi-BMPs Adoption Factors

=-

63.38

0.000

0.1243

Loglikelihood 223.281

LR Chi2 (24) Pr > Chi2

Pseudo R2

	Coefficients (std. errors)				
Adoption	Single	Double-BMPS	Triple-BMPs	Quadruple-BMPs	
Variables	adoption	ado.	ado.	ado.	
		0.0117	0.0008	-0.038	
Nb. of locations		(0.0246)	(0.02276)	(0.03526)	
		-0.757	<mark>-1.334*</mark>	0.6327	
Ownership	_	(0.74)	(0.69071)	(1.23048)	
		<mark>1.0392*</mark>	0.8584	<mark>1.1436*</mark>	
Agronomic produces		(0.5029)	(0.53596)	(0.6534)	
		0.00001	-0.00004	-7E-05	
Total acreage	as	(0.00004)	(0.00005)	(0.00012)	
	0	<mark>1.1217*</mark>	1.3625*	<mark>1.7554*</mark>	
Vegetables	ite _	(0.60011)	(0.5763)	(0.67823)	
	Ĭ	<mark>1.5155*</mark>	<mark>1.1129*</mark>	<mark>2.0638**</mark>	
Fruits	(D	(0.60627)	(0.6463)	(0.70983)	
		-0.081	0.0117	<mark>0.0529*</mark>	
Nb of grown crops	_	(0.07279)	(0.02357)	(0.02813)	
		<mark>2.4712***</mark>	<mark>2.9677***</mark>	<mark>2.1665**</mark>	
Citrus		(0.651)	(0.65223)	(0.83017)	
		-0.543	-0.306	<mark>-2.978*</mark>	
Constant		(0.79273)	(0.7232)	(1.27836)	

