PHOSPHORUS SOURCE CONTRIBUTIONS UNDER CURRENT AND FUTURE CLIMATE IN A LAKE OKEECHOBEE SUBWATERSHED

Yogesh P. Khare¹ Satbyeol Shin² Rajendra Paudel^{1,3} Younggu Her²

The Everglades Foundation, 2 – University of Florida,
 3 – South Florida Natural Resources Center

Outline

CVC GLADE FOUNDATIO

- Legacy P is a global problem, which may become worse with climate change
- Large lag times for water quality improvement
- Watershed simulation models
 need development
- Legacy P: A big component of TP loads to Lake Okeechobee

Background

Lake Okeechobee Watershed TP TMDL

- ▶ 105 mt/y TP Load
- Current loads: ~4 times
- Lake Okeechobee BMAP
 - Focus on identification and effectiveness of projects
- Legacy P
 - LO Watershed ~ 180,000 ± 30% mt (SWET and JGH, 2008)

UF Water Institute Symposium 2/22/2022

Background

Objectives

1. Quantify contribution of legacy, inorganic fertilizer, and other P sources to existing TP loads

2. Estimate potential impact of climate change on source contributions

4

UF Water Institute Symposium 2/22/2022

Approach

Phase 1

- Historic climate21-year simulations1993-2013
- Climate Projections

Phase 2

- RCP8.5 Near Term (2033-
- 2053) • Far Term(2063-2083)

- Watershed Assessment Model (WAM)
- Scenario analysis approach to apportion TP loads to source types
 - Legacy P, inorganic fertilizer P, other sources
- Test Case: Taylor Creek Nubbin Slough

5

UF Water Institute 2/22/2022

Symposium

Study Area

- Drainage Area ~ 800 sq. km (7% of LOW)
- ► TP Hotspot (WY1991-2018)
 - ▶ TP FWMC: 525 µg/L
 - ▶ TP Load: 107 mt/y
 - ► UAL: 1.33 kg/ha/y

► LU/LC

- ▶ Pastures (60%), other Ag. (16%)
- ▶ Natural (14%)
- Urban and built-up (9%)

Soils

- Immokalee, Myakka, Floridana, Basinger
- Sandy, poorly drained

WAM Overview

- Physically-based, spatially distributed, watershed scale
- Inputs: Soil, LU/LC, Topography, Streams, Rainfall, Weather
- Source loads: BUCSHELL {GLEAMS, EAAMOD, Special-case}
- Routing: BLASROUTE

TCNS

 \triangleright

- ▶ EAAMOD 86.4% of model domain
- Legacy P
 - Initial application
 - Land use based typical values
- ▶ InOrg. Fert. P and Org. Fert. P
 - management calendar

Model Performance

8

Minor re-calibration

Phase 1: P Source Contributions

UF Water Institute Symposium 2/22/2022

Phase 2: Climate Projections

- Precipitation and Temperature Projections (RCP8.5)
 - Near Term Future (NT): 2030-2053
 - Far Term Future (FT): 2060-2084
- Rainfall and drought characteristics based GCM evaluation methodology (Song et al., 2020)
- ► 4 Rainfall GCMs:
 - ► Bcc-csm1-1-m
 - ► CMCC-CMS
 - ► FGLOALS-g2
 - ► FGLOALS-s2

	Rainfall	Temperature
Historic (1990- 2013)	1173 mm	24.13 °C
NT	896 mm (-23.6 %)	26.16 °C (+2.03 °C)
FT	837 mm (-28.6 %)	28.18 °C (+4.04 °C)

UF Water Institute Symposium 2/22/2022

Phase 2: TP Loads

1 UF Water Institute Symposium 2/22/2022

Phase 2: Flows and FWMC

UF Water Institute Symposium 2/22/2022

Conclusions

- Legacy P contributed as much as 60.8% of the TP Load from TCNS
- GCM projections indicate
 - Drier and hotter conditions
 - less flow, but similar TP loads and high concentrations
- Future investigations
 - Performing continuous long-term simulations
 - Legacy P model

Khare, Y.P.; Paudel, R.; Wiederholt, R.; Abiy, A.Z.; Van Lent, T.; Davis, S.E.; Her, Y. Watershed Response to Legacy Phosphorus and Best Management Practices in an Impacted Agricultural Watershed in Florida, U.S.A. Land 2021, 10, 977. https://doi.org/10.3390/land10090977 UF Water Institute Symposium 2/22/2022

Thank You!

ykhare@evergladesfoundation.org

<u>Co-authors</u>

Satbyeol Shin, ABE UF Rajendra Paudel, EF & SFNRC Younggu Her, ABE UF

/EvergladesFoundation

@EvergladesFoundation

www.evergladesfoundation.org

