TAYLOR ENGINEERING, INC.

Combined Probability of Coastal and Riverine Flooding

UF Water Institute February 23, 2022

Angela Schedel, PhD, PE

Overview

• History Bookmarks Insert Selection Geoprocessing Customize Windows Help File Edit View _____

 ______ | % 🗃 🛍 🗙 🔊 (~) 🛧 - | 1:200,000 0 0 🕅 🕥 💥 🖸 | 🖛 🔿 | 🕅 - 🖸 | 💺 | 🚺 🥖 💷 | 🔛 👫 📸 🕺 | 🗔 | 👰 | Method Calculate CROR Calculate CROR (MIKE-SHE) Table Of Contents Ψ× : 📮 😞 📮 🗄 🗆 *L*ayers • Assumptions 🖃 🗹 Basemap 5 ₩ World Imagery □ COA_100YR Value High : 6.99 • Examples Low: 4.89135 □ COA_500YR • In Work Value High : 10.1988 Low: 0.00082583 □ COA_50YR Value High : 3.495 Low: 2.44568 □ COA_10YR Value High : 0.699 Low: 0.489135 □ COA_25YR Value High: 1.7475 Low: 1.22284 **2000** 256990.797 199307.013 Meter

History

• FEMA Flood Insurance Studies (NFIP, previously FIA)

Taylor Engineering | 3

History

• Is flooding controlled by riverine, coastal, or combined effects?

Taylor Engineering | 4

History

• Floodway Table

LOCATION		FLOODWAY			1% ANNUAL CHANCE FLOOD WATER SURFACE ELEVATION (FEET NAVD88)			
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQ. FEET)	MEAN VELOCITY (FEET/ SEC)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
A B C D E F G H I J K L M	8,600 9,250 9,830 11,680 12,690 13,470 16,030 16,765 17,059 17,559 17,860 18,239 18,730	265 320 250 135 80 71 33 75 125 325 154 88 190	2,464 3,014 1,977 1,024 739 746 318 357 797 1,296 1,512 1,098 1,977	3.9 2.9 3.6 4.8 7.0 6.9 14.4 12.8 5.7 5.4 4.7 6.4 3.6	* 9.8 ² 10.5 ² 12.8 15.6 18.0 23.0 26.4 29.1 30.7 32.3 36.7	8.5 ³ 8.9 ³ 9.2 ³ 10.4 ³ 12.8 15.6 18.0 23.0 26.4 29.1 30.7 32.3 36.7	8.9 9.6 10.1 10.7 13.3 16.5 18.8 23.6 27.1 29.5 31.6 33.2 37.6	0.4 0.7 0.9 0.3 0.5 0.9 0.8 0.6 0.7 0.4 0.9 0.9 0.9 0.9
¹ Feet above U.S ² Combined coas ³ Elevation comp * Controlled by o FEDERA	L EMERGENCY	ffects from Univ sideration of bac see Flood Insur MANAGEMEN JNTY, STAT	ersity Bay and C kwater effects fr ance Rate Map F AGENCY	ollege Creek om University Ba for regulatory bas	y ie flood elevation Fl		DATA	

Methods – Prescribed by FEMA

- Combined Probability Analysis
- Riverine & Coastal Surge
- Assumptions
 - Extreme levels in riverine and coastal processes are physically independent
 - > And are not concurrent
 - > Or at least widely separated in time

Inputs for Combined Probability Analysis

- Coastal Stillwater Elevations (Surge SWEL)
 - > ADCIRC Advanced CIRCulation storm surge model
- Riverine WSELs
 > HEC-RAS
 > SWMM
 > MIKE-SHE

Inputs for Combined Probability Analysis

1.5

- Coastal Stillwater Elevations (Surge SWEL)
 - > ADCIRC Advanced CIRCulation storm surge model
- Riverine WSELs
 - > HEC-RAS
 - > SWMM
 - > MIKE-SHE

$$R_{P,T}(Z) = R_{P,R}(Z) + R_{P,S}(Z)$$

where:

 $R_{P,T}(Z)$ = Total Rate of occurrence at each point of interest, P, and elevation, Z $R_{P,R}(Z)$ = Riverine Rate of occurrence at each point of interest, P, and elevation, Z $R_{P,S}(Z)$ = Surge Rate of occurrence at each point of interest, P, and elevation, Z

Source: FEMA Guidance for Flood Risk Analysis and Mapping, November 2016

Taylor Engineering | 9

$$R_{P,T}(Z) = R_{P,R}(Z) + R_{P,S}(Z)$$

where:

 $R_{P,T}(Z)$ = Total Rate of occurrence at each point of interest, P, and elevation, Z $R_{P,R}(Z)$ = Riverine Rate of occurrence at each point of interest, P, and elevation, Z $R_{P,S}(Z)$ = Surge Rate of occurrence at each point of interest, P, and elevation, Z

Taylor Engineering | 10

$$R_{P,T}(Z) = R_{P,R}(Z) + R_{P,S}(Z)$$

where:

 $R_{P,T}(Z)$ = Total Rate of occurrence at each point of interest, P, and elevation, Z $R_{P,R}(Z)$ = Riverine Rate of occurrence at each point of interest, P, and elevation, Z $R_{P,S}(Z)$ = Surge Rate of occurrence at each point of interest, P, and elevation, Z

Taylor Engineering | 11

$$R_{P,T}(Z) = R_{P,R}(Z) + R_{P,S}(Z)$$

where:

 $R_{P,T}(Z)$ = Total Rate of occurrence at each point of interest, P, and elevation, Z $R_{P,R}(Z)$ = Riverine Rate of occurrence at each point of interest, P, and elevation, Z $R_{P,S}(Z)$ = Surge Rate of occurrence at each point of interest, P, and elevation, Z

Taylor Engineering | 12

Combined Probability Analysis – Past Examples

Combined Probability Analysis – Past Examples

Combined Probability Analysis - Past Examples

Combined Probability Analysis – Past Examples

Taylor Engineering | 16

Improved Method

• ArcGIS plug-in (CROR Tool) input menu

276146.669 213753.292 Meters

Improved Method

 Outputs of CROR Tool showing points at 100 yr return period

In Progress - Texas General Land Office (GLO) River Basin Flood Study; Riverine and Coastal Analysis

- Rainfall/riverine and coastal/surge contributions
 > 2D HEC-RAS modeling
 - > Updated regional USACE coastal study
- Dynamic processes of concurrent rainfall, runoff, and coastal storm surge
 - Examine model results in comparison to important historical storms
 - Tropical and extra-tropical
 - > Apply rain-on-mesh hydrology
 - Single-segment stage boundary conditions

QUESTIONS?

Angela Schedel, Ph.D., P.E. aschedel@taylorengineering.com

Taylor Engineering20

Inputs for Combined Probability Analysis

• Coastal Stillwater Elevations (Surge SWEL)

> ADCIRC –
 Advanced
 CIRCulation
 storm surge
 model

Riverine WSELs
 > HEC-RAS
 > SWMM
 > MIKE-SHE

Taylor Engineering | 21