Development of Future Climate Scenarios for Regional Hydrologic Simulations in South Florida

Jayantha Obeysekera ('Obey') Florida International University Jennifer Barnes Water Wilcox South Florida Water Management District Anupama John Florida International University UF Water Institute 2022 Symposium

Web: https://environment.fiu.edu | http://slsc.fiu.edu Facebook: @FIUWater | Twitter: @FIUWater

February 22-23, 2022

Regional Modeling based on the Stationarity Concept

Regional Simulation Model

SFWMM (a.k.a. 2x2) 1965-2016

Regional Groundwater Models generally 1985-2014

Nonstationarity Projections may be Deeply Uncertain

	General Circulation Model	Downscaling			Climate Scenarios			
NaturalaVaniability		GCM (IPCC, 2007)	Statistical Dynamical	nics	RCP2.6	RCP4.5	RCP6.0	RCP8.5
					SSP1	SSP2	SSP3	SSP4-5
		BCM2 CGHR CGMR CNCM3 CSMK3 ECHOG FGOALS GFCM20 GFCM21 GIAOM INCM3 IPCM4 MIHR MIHR MIMR MPEH5 NCCCSM NCPCM	 Construct Analogues (CA) Bias Correct and Spatial Dow aling SCSD) Weath Generators 	Regional Climate Models (Reals)	Ice Sheet Dynai	Clin Imp Res Inv	mate Ch Discent ource estigation cenario h pproache lse all mo fodel Cu	ange Sin Wi caline ons: ased s dels ling?

Scenario Development Approach

Acquisition and assessment of climate model data for future periods

➤GCM resolution is too coarse

>Downscaled data available for Florida:

Statistical Downscaling

Dynamical Downscaling

Available for future potential atmospheric scenarios Representative Concentration Pathways (RCPs). RCP4.5 and RCP8.5

Datasets Assembled:

- Coordinated Regional Downscaling Experiment (CORDEX), dynamicallydownscaled (World Climate Research Program) (25 and 50 km scales, gridMET and Daymet datasets for bias-correction)
- Localized Constructed Analogues (LOCA), statistically downscaled (SCRIPPS Institute of Oceanography) (1/16 deg~6 km, Livneh dataset)
- Multivariate Adaptive Constructed Analogs (MACA), statistically downscaled (University of California, Merced) (1/16~6 km, Livneh and gridMET datasets)

LOCA Data

Dataset	Scenarios(#)	Global	Climate Models
Localized Constructed	Historical (30)	ACCESS1-0	GFDL-ESM2M
Analogues (LOCA)	RCP45 (30)	ACCESS1-3	GISS-E2-H
	RCP85 (30)	bcc-csm1-1-m	GISS-E2-R
		CanESM2	HadGEM2-AO
		CCSM4	HadGEM2-CC
		CESM1-BGC	HadGEM2-ES
		CESM1-CAM5	IPSL-CM5A-LR
		CMCC-CM	IPSL-CM5A-MR
		CMCC-CMS	MIROC5
		CNRM-CM5	MIROC-ESM
		CSIRO-Mk3-6-0	MIROC-ESM-CHEM
		EC-EARTH	MPI-ESM-LR
		FGOALS-g2	MPI-ESM-MR
		GFDL-CM3	MRI-CGCM3
		GFDL-ESM2G	NorESM1-M

MACA Data

Dataset	Scenarios (#)	Global Climate Models		
Multivariate Adaptive	Historical (20)	bcc-csm1-1	HadGEM2-ES365	
Constructed	RCP45 (20)	bcc-csm1-1-m	inmcm4	
Analogs	RCP85 (20)	BNU-ESM	IPSL-CM5A-LR	
(MACA)		CanESM2	IPSL-CM5A-MR	
		CCSM4	IPSL-CM5B-LR	
		CNRM-CM5	MIROC5	
		CSIRO-Mk3-6-0	MIROC-ESM	
		GFDL-ESM2G	MIROC-ESM-CHEM	
		GFDL-ESM2M	MRI-CGCM3	
		HadGEM2-CC365	NorESM1-M	

CORDEX Data

Dataset	Scenarios (#)	Global Climate Models		
Coordinated Regional Downscaling Experiment (CORDEX)	Historical (54) RCP85 (54)	CanESM2.CanRCM4, CanESM2.CRCM5-UQAM CanESM2.RCA4 EC-EARTH.HIRHAM5 EC-EARTH.RCA4	GFDL-ESM2M.WRF HadGEM2-ES.RegCM4 HadGEM2-ES.WRF MPI-ESM-LR.CRCM5-UQAM MPI-ESM-LR.RegCM4	
		GEMatm-Can.CRCM5-UQAM GEMatm-MPI.CRCM5-UQAM GFDL-ESM2M.RegCM4	MPI-ESM-LR.WRF MPI-ESM-MR.CRCM5-UQAM	
	RCP45 (14)	CanESM2.CanRCM4 (2) CanESM2.CRCM5-UQAM CanESM2.RCA4	EC-EARTH.HIRHAM5 EC-EARTH.RCA4 MPI-ESM-LR.CRCM5-UQAM	

Model Culling: Metrics

ID	Indicator Name	Definition	Units
PRCPTOT	Annual total precipitation	Annual total, days > 1mm	inches
PMMEAN	Seasonal Pattern	Mean monthly rainfall	inches
WSTART	Wet Season Start Date	Start of the Wet Season	days
R10mm	Heavy precipitation days	# of days with > 10mm	days
R20mm	Heavy precipitation days	# of days with > 20mm	days
SDII	Daily intensity index	Ratio Annual precipitation / #wet days	inches /day
CDD	Consecutive dry days	#max. consecutive days < 1 mm	days
CWD	Consecutive wet days	#max. consecutive days > 1 mm	days

ID	Indicator Name	Definition	Units
RX1day	Max 1-day precipitation amount	Annual maxima of 1- day precipitation	inches
R95p	Very wet days	Annual precip from days > 95%	inches
R99p	Extreme wet days	Annual precip from days > 99%	inches
RX3day	Max 3-day precipitation amount	Annual maxima of 3- day precipitation	inches
RX5day	Max 5-day precipitation amount	Annual maxima of 5- day precipitation	inches
RX7day	Max 7-day precipitation amount	Annual maxima of 7- day precipitation	inches
RX10day	Max 10-day precipitation amount	Annual maxima of 10- day precipitation	inches

Model Culling: Evaluation using indices

- Climate indices defined by Expert Team on Climate Change Detection and Indices (ETCCDI) (Sillman et al 2013; Srivastava et al. 2020)
- ➢Root Mean Square Error(RMSE of an index I for model m:

$$RMSE_{m,I} = \left[\frac{1}{N}\sum_{n=1}^{n=N} \left(\overline{I_{m,n}} - \overline{I_{o,n}}\right)^2\right]^{1/2}$$

Final Field And A Straight And Straight A StraightA Straight A Straight A Straight A Straight A Straight A Stra

Evaluation using indices (Cont.)

➢Normalize RMSE for model m and index I:

 $\gg NRMSE_{m,I} = \frac{RMSE_{m,I} - RMSE_{median,I}}{RMSE_{median,I}} \quad \text{where median is across all models}$

> Model Climate Performance Index, **MCI** = Average of all NRMSEs over all indices

> Inter-annual Variability Skills Score (IVSS): $IVSS_{m,I} = \left[\frac{1}{N}\sum_{n=1}^{n=N} \left(\frac{\sigma_{m,n,I}}{\sigma_{o,n,I}} - \frac{\sigma_{o,n,I}}{\sigma_{m,n,I}}\right)^{2}\right]$

 $\sigma_{m,n,I}$: Interquartile range for model m (o for reference data), cell n, and index I **Normalized IVSS**

$$VIVSS_{m,I} = \frac{IVSS_{m,I} - IVSS_{median,I}}{IVSS_{median,I}}$$

>Model Variability Index, **MVI** = Average of all NIVSS over all indices

Model Culling

MVI proptot MVI vs. MCI for dataset LOCA at SFWMD resolution Climate region: SFWMD. Base period: 1950-2005 ACCESS1-0 GISS-E2-H 0 CESM1-CAM5 FGOALS-g2 MVI (mean) MIROC5 0.5 HadGEM2-AO PI-ESM-MR MIROC-ESM MRI-CGCM3 HadGEM2-CC HadGEM2-ES GFDL-ESM2G CMCC-CMS CMCC-CI GFDL-CM3 IPSL-CM5A-LR MPI-ESM-LR CanESESM1-BGC MIROC-ESM-CHEM NorESM1-M CSIRO-MK -csm1-1-n 0.015 -0.015 -0.010 -0.005 0.000 0.005 0.010 MCI (mean

MCI

"...models that lie in the bottom-left quadrant have performance better than median performance in simulating both the climatologies and interannual variability of the indices" Srivastava et al. (2020)

Total Precipitation (Entire SFWMD Region)

Model Selection – Seasonality (LOCA)

Five Models – and their seasonal patterns (LOCA)

Scenario	Model #	Percentile	Average Rainfall (inches)	Model Name	► - Historical (Model) Five Models
1	24	5%	41.36	pr_MIROC- ESM_r1i1p1_rcp85_2006- 2100	- 2 - 6
2	5	25%	46.44	pr_CCSM4_r6i1p1_rcp85_20 06-2100	A - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -
3	4	50%	50.18	pr_CanESM2_r1i1p1_rcp85_ 2006-2100	
4	20	75%	52.14	pr_HadGEM2- CC_r1i1p1_rcp85_2006-2100	
5	29	95%	56.97	pr_MRI- CGCM3_r1i1p1_rcp85_2006- 2100	1 2 3 4 5 6 7 8 9 10 11 12 Month

Wet Season Start Date (LOCA)

Aug 15

Aug 1

Jul 15

Jun 15

May 15

May 1

Jun 1

Jul 1

Concluding Remarks

- Best Models are not always consistent across metrics
- LOCA and MACA show similar results (more drier scenarios in the future)
- CORDEX showed a larger biases in the base period (preliminary observation – results are being finalized)
- Selected rainfall datasets may be used for "stress testing" in project planning
- A similar analysis was conducted for Temperature (to be included in the final report) and they may be used for computing future evapotranspiration