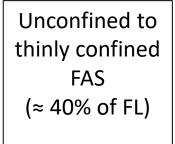
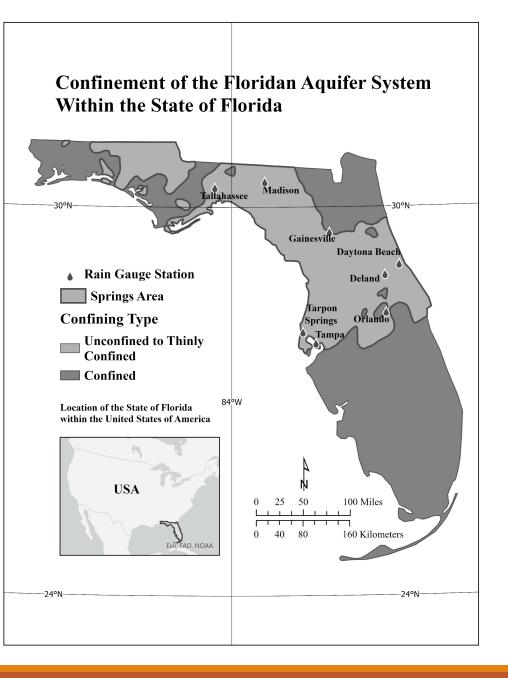
Regional, Passive, Saline Encroachment in Major Springs of the Floridan Aquifer System (1991-2020)


RICK COPELAND, GARY MADDOX, AND ANDY WOEBER AQUIFERWATCH INC. RICK@AQUIFERWATCH.ORG

Third Investigation of Regional/Statewide, Passive Saltwater Encroachment


Springs and wells, mostly in Floridan aquifer system (FAS), 1991 (Copeland et al., 2011)

2. Springs and wells in the FAS 1991-2011 (Copeland and Woeber, 2021)

3. Springs in the FAS, 1991-2020 (Copeland et al., 2021)

Springs Area = Study Area

Springs and Study Objectives

Springs

A. Major springs (1st and 2nd magnitude springs)

B. Sufficient data for 30 years of analysis (1991-2020)

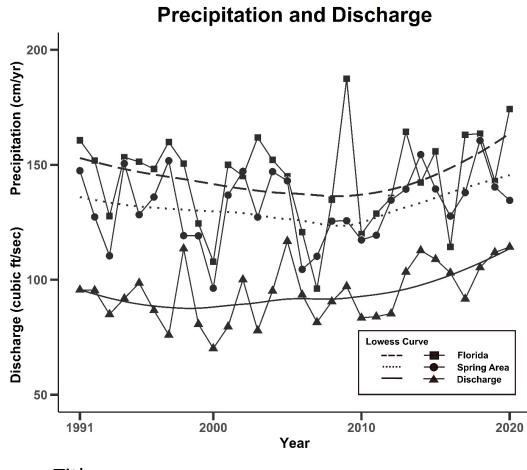
Objectives

1. Determine if passive encroachment occurred, and if so:

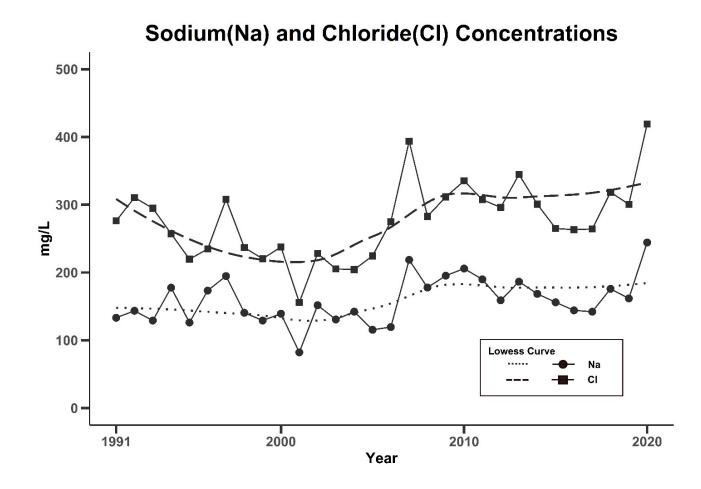
2. Estimate its areal extent

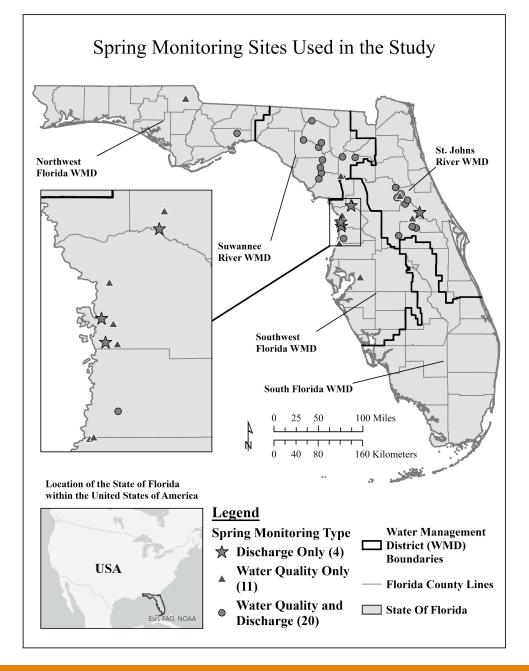
3. Estimate rates of changes

4. Discuss plausible drivers


Indicators and Methods

Indicators


- Precipitation (Annual Means)
- Discharge (Annual Means)
- Na and Cl (positively skewed), and for this reason used (Annual Medians)


Methods

- Statistical analyses conducted in R freeware programming language
- The Regional Kendall Test (RKT)
 - Null hypothesis no change in slope; Alternate hypothesis change in slope; alpha pre-set at 0.10

Divided Study into Periods and Regions

Period	Region
Entire Period (1991-2020)	 Springs Area, 2. NWFWMD and SRWMD Region, SJRWMD Region, 4.SWFWMD Region
Early Period (1991-2011) (Same as Earlier Study)	 Springs Area, 2. NWF and SR WMD Region, SJRWMD Region, 4.SWFWMD Region
Late Period (2006-2020) (Last half of Study)	 Springs Area, 2. NWFWMD and SRWMD Region, SJRWMD Region, 4.SWFWMD Region

Adjustments for Autocorrelation (AC)

Annual means and medians minimally affected by serial AC

Spatial AC

- Built on work of Boniol (2002), based on Chloride
- Kriging exercise in the St. Johns River WMD: range = 15,240 m
- For study, constructed 1173 hexagons across FL, with diameter = 15,240 m
- Plotted all monitoring sites on hexagon coverage
 - If more than one site located in a hexagon, randomly selected one site Precipitation = 8 sites, Discharge = 24 sites/springs, Na and Cl = 31 springs

Regional Kendall Test Results 1991-2020

Indicator	Stations	Years Units		Sen Slope	p-value	
Florida Springs Area						
Rain	8	30	cm/yr	-0.049	0.594	
Discharge	24	30	(m³)(sec)/yr	-0.045	0.459	
Na	31	30	(mg/L)/yr	0.056	<0.001	
Cl	31	30	(mg/L)/yr	0.135	<0.001	
NWFWMD and SRWMD Region						
Rain	3	30	cm/yr	0.119	0.302	
Discharge	11	30	(m³)(sec)/yr	0.330	0.281	
Na	12	30	(mg/L)/yr	0.005	<0.001	
Cl	12	30	(mg/L)/yr	0.135	<0.001	

Regional Kendall Test Results 1991-2020

Indicator	Stations	Years	Units	Sen Slope	p-value	
SJRWMD Region						
Rain	3	30	cm/yr	-0.298	0.377	
Discharge	9	30	(m³)(sec)/yr	-0.136	0.020	
Na	9	30	(mg/L)/yr	0.111	<0.001	
Cl	10	30	(mg/L)/yr	0.170	<0.001	
SWFWMD Region						
Rain	2	30	cm/yr	0.358	0.014	
Discharge	4	30	(m³)(sec)/yr	0.659	0.224	
Na	9	30	(mg/L)/yr	0.085	<0.001	
Cl	9	30	(mg/L)/yr	0.248	<0.001	

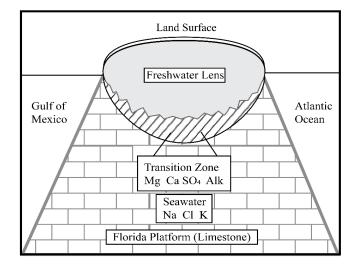
Regional Kendall Test Results E (1991-2011) and L (2006-2020) Periods

	Stations	Sen Slope	P-value	Stations	Sen Slope	P-value
Period	Early (1991-2011)		La	te (2006-202	20)	
	Springs Area					
Rain	8	-0.237	0.293	8	0.270	0.364
Discharge	24	-0.670	0.226	24	0.550	0.019
Na	31	0.086	<0.001	31	0.015	0.244
Cl	31	0.138	<0.001	31	0.135	<0.001
	NWFWMD and SRWMD Region					
Rain	3	-0.281	0.129	3	1.200	0.011
Discharge	11	-0.849	0.133	11	0.163	0.007
Na	12	0.083	<0.001	12	-0.028	0.024
Cl	12	0.071	0.002	12	0.075	0.006

Regional Kendall Test Results 1991-2020

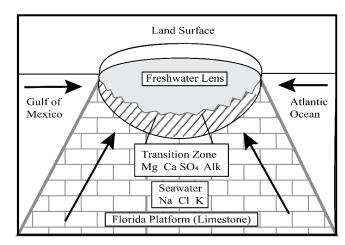
	Stations	Sen Slope	P-value	Stations	Sen Slope	P-value
Period	Early (1991-2011)		La	Late (2006-2020)		
	SJRWMD Region					
Rain	3	-1.104	0.253	3	2.460	0.006
Discharge	9	-0.062	0.497	9	0.100	0.131
Na	10	0.086	<0.001	10	0.085	0.011
Cl	10	0.103	0.164	10	0.224	<0.001
	SWFWMD Region					
Rain	2	-0.237	0.293	2	0.270	0.364
Discharge	4	-0.990	0.220	4	6.050	<0.001
Na	9	0.089	<0.001	9	0.067	0.006
Cl	9	0.200	<0.001	9	0.163	<0.001

Conceptual Model


All Freshwater aquifer systems (including FAS) are lumped together into Freshwater lens

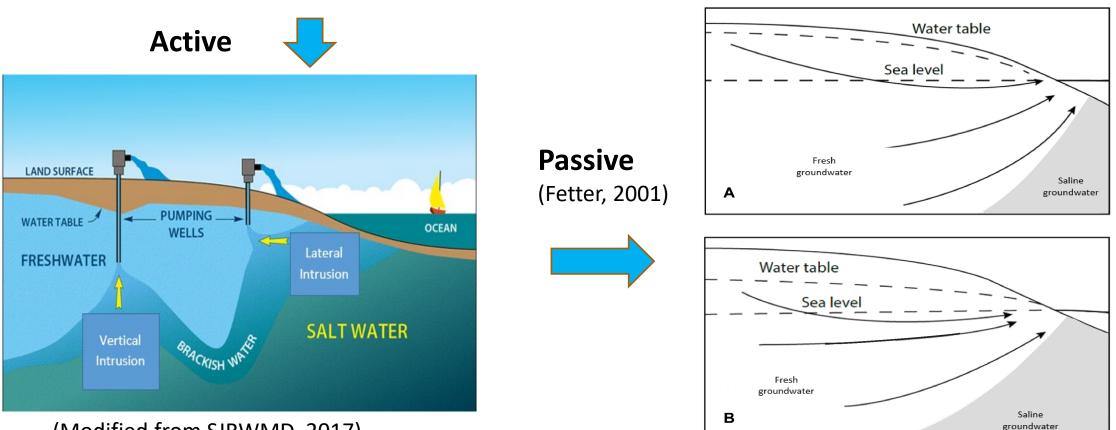
Top: Normal (Rainfall) Times

Bottom: Extended Dry Period


Sea - Level Rise: Similar situation to bottom

(A)

Reduced Freshwater Lens During Dry Period Spring Discharge and Water Table Decline



Passive Saltwater Encroachment

Fetter (2001) – Occurs when some fresh GW is diverted from an aquifer, yet the hydraulic gradient is still sloping toward saltwater–freshwater boundary until it reaches an equilibrium position.

Movement is slow. It may take hundreds of years for the boundary to shift a significant distance.

Active Versus Passive Encroachment

(Modified from SJRWMD, 2017)

Potential Drivers

- **1.** Decreasing Rainfall and a Resultant Decreases in Recharge to FAS
- **2. Groundwater Extraction**
- 3. Sea-Level Rise

Decreasing Rainfall and Consequent Decreasing Recharge?

Florida suffered a severe draught, 1999-2002 (Verdi et al., 2006)

Rainfall in Florida is related to climatic oscillations. E.G. Atlantic Multidecadal Oscillation (AMO) and El Nino-Southern Oscillation. (Kelly and Gore, 2008; Canfield et al., 2018).

Note, FL's rainfall decreased from mid 1970s to mid 2000s and has increased since. Possibly related to AMO.(Climate Data, 2021)

Recharge and Groundwater (GW) Extraction?

Recharge to FAS≈ 19.0 cm/yr (Bellino et al., 2018)

USGS (Marella, 2015) indicated that FL's GW extraction has decreased from 1990 – 2012.

Decrease related to WMD conservation efforts (U.S. Environmental Protection Agency, 2017).

Since GW extraction declined during study, it is not a major driver of observed changes.

Sea-Level Rise

NOAA reported that sea-level rose on 8.76 cm (0.29 ft) between 1993 and 2019 (NOAA, 2021); about 0.32 cm/yr.

For the 30-year study, sea-level rise not considered as important as Climate cycle.

However, by 2100, sea-level rise predicted to be 1.2 m to 2.5 m (US EPA, 2017). In future, the impact of sea-level rise on FAS chemistry is expected to increase.

Rate of Increase and a Question

	Sodium	Chloride
Increase	(30 - yr Total) (mg/L)	(30 - yr Total) (mg/L)
Median	1.68	4.05
Mean	17.67	65.43

Med concentrations of Na increased 19.7%, and for Cl it increased 33.0%.

Na and Cl increased statistically. Is there a practical significance?

More of a practical uneasiness!

Changes occurred over an area as large as the Spring Area of Florida ($\approx 40\%$).

Changes occurred over multiple decades.

Unresolved Issues

Assuming the AMO is a major driver of rainfall, Florida will likely experience increased rainfall for the next several decades.

 Most Floridians will likely be more concerned with surface-water flooding than saline encroachment.

Why worry about saline encroachment?

• Eventually, rainfall will enter a declining state. When it does, there will likely be an increase in the rate of sea-level rise.

Key Findings

Concentrations of Na and Cl increased in Florida Spring water over a large portion of Florida.

For multiple decades, Florida has experienced passive saltwater encroachment

What is Florida Doing?

- The Florida Water Resource Monitoring Council, through the Salinity Workgroup, established a Coastal Salinity Monitoring Network in Florida, including the Spring Area.
- Data, stored in agency databases, are being sent to the Water Information Network (WIN) database at Florida DEP.
- Once complete, the Workgroup will work on developing methods to assist in the monitoring of saline encroachment.
- Resilient Florida Grant Program (from F.S. 380.093) includes funding for the local planning for sea-level rise.

Questions

Rick Copeland

Rick@aquiferwatch.org

(850) 559-7199

P.O Box 11185, Tallahassee, FL 32302