Morphodynamics of Oyster Reefs in Tidal Flats Under Various Sea-Level Rise and Wave Scenarios UF UNIVERSITY of FLORIDA Daniele Pinton¹, Alberto Canestrelli¹, Simeon Yurek², Julien Martin² 1. Department of Civil & Coastal Engineering, University of Florida 2. United States Geological Survey (USGS)

A. Introduction and Objective

Oyster Reefs

Oyster reefs are self-organized structures, that establish and grow through feedbacks between internal population dynamics and external factors. Reef selforganization depends on the balance of production and occupancy of the local substrate

Objective

Analyze the feedback between hydrodynamics and reef evolution and survival in an estuarine environment

Oyster populating a reef in the Guana-Tolomato Matanzas Estuary, Florida, USA (Courtesy of the GTMNERR)

Method

We couple:

- The oyster reefs individual-based model (IBM) developed by Yurek et al. (2021) [1], which simulates the evolution of an oyster reef in time
- A wave model (Fagherazzi et al., 2006) [2], which computes the local wave height by using different combinations of: (1) water depth; (2) wave period; (3) wind speed; (4) sea level rise (SLR)

Oyster reefs in the GTM estuary, divided in **Dead** and **Alive**. (Map of the Fish and Wildlife Research Institute)

C. Model Scenarios

years), where:

- (see previous slide)

We considered all the possible combinations of the water depth, wave period, wind speed, SLR values reported in the following table

Parameter	Values	U.M.
Sea Level Rise (SLR)	0-3-10	mm/year
Wind Speed (U)	1-5-10	m/s
Wave Period (T)	0.5-1-2-4-6	S
Water Depth (Y)	0.50-0.75-1.00-1.50	m

The Values of U, T, and Y are obtained from Lyddon et al., 2019 [4]; Jackson, 2010 [5]; and Carniello et al., 2010 [6]. The rates of SLR of 3 and 10 mm/year are the global average and maximum, respectively

Contact Informatio			
Daniele Pinton,	danie		
Alberto Canestrelli,	albert		
Simeon Yurek,	syure		
Julien Martin,	julien		
	,		

The model scenarios simulate **post-restoration conditions** (200

• the initial elevation of the reef is 20 cm above the reference level

• the density of oysters is 400 individuals/m²

Carniello, L.; D'Alpaos, A.; Defina, A. Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuar. Coast. Shelf Sci. 2011, 92, 263–276. **THANK YOU!** Abundant Native Oyster Population. *Estuaries and Coasts* **2021**, doi:10.1007/s12237-021-01017-x.

Jackson, N.L. Wind and Waves: Influence of Local and Non-local Waves on Mesoscale Beach Behavior in Estuarine Environments. Ann. Assoc. Am. Geogr. 1995, 85, 21–37. Gray, M.W.; Pinton, D.; Canestrelli, A.; Dix, N.; Marcum, P.; Kimbro, D.; Grizzle, R. Beyond Residence Time: Quantifying Factors that Drive the Spatially Explicit Filtration Services of an