Breathing Life into a Spring

Prioritizing Restoration Activities in Florida's Springs
SCHOOL OF FOREST,

Gregory Owen ${ }^{1,2}$, Matthew J. Cohen ${ }^{2}$

${ }^{1}$ Alachua County Environmental Protection Department, ${ }^{2}$ University of Florida, School of Forest, Fisheries, and Geomatics Sciences

Introduction

- Springs have transitioned from submerged aquatic vegetation (SAV) to nuisance algae
Restoration has primarily focused on nutrien
redarion
Restoration falls because resilience of degraded ecosystems is not considered
Restoration techniques are not equal and may vary by site
Ranking a hierarchy of needs for individual site promotes restoration success
Objective
Determine hierarchy of restoration needs by evaluating competing restoration needs in Florida's conic springs
Hypotheses
Dissolved oxygen (DO) is a keystone driver of restoration success
Plant and snail introductions more successful when dissolved oxygen concentrations are favorable

Materials and methods
Plant and algal growth measured at Hornsby Spring over one-year period:
Control plots and combination of 4 variables tested and replicated 3 times (total 48 plots)

1. Addition of Snails (S)
2. Removal of Algae (A)
3. Planting of Submerged Aquatic Vegetation (P)
4. Increased DO through Aeration (D)

Dissolved oxygen averaged $0.20 \mathrm{mg} / \mathrm{L}$
aaturally/increased to 1.77 in aeration
primary factors equal
Alimary factors equal
Algal growth measu
cleaned
Plant growth measured by counts of stocks and leaf blades measurements

A. Hornsby Spring Location, B. Experiment Location, C. Experiment Set Up, D. Schematic of Experiment Design

Results

Aeration alone was statistically significant and reduced the slope of the model by $\sim 25 \%$
Seration reduced slopy significant when combined with Planting SAV and aeration lesser yet still statistically significant reduction in algal biomass
significant reduction in algal biomass
Removal of algea at the start of the project did not have significant effect of the growth of algae

Results continued
Aeration had significant effect on establishment and growth of SAV
The number of plants significantly increased compared to treatments without aeration
SAV reproduced and flowered over the period of the project only with aeration
Treatments at background levels of DO $(0.22 \mathrm{mg} / \mathrm{L})$ experienced high levels of plant mortality
Algal Cell counts significantly less on treatments receiving aeration vs without Composition of algal communities differed between treatments with and without DO

Aeration Treatment Box with Snails and Plants

Conclusions

Complex interactions among ecosystem drivers and internal processes limit the efficacy of some restoration actions
Algal removal activities offered limited value either alone or in combination with other activities Gastropods have a strong affect on algal growth, but only when dissolved oxygen threshold (>1.6 mg / L) are met
SAV planting were successful only when dissolved oxygen thresholds ($>1.67 \mathrm{mg} / \mathrm{L}$) are met Dissolved oxygen is the keystone variable controlling spring restoration

Literature cited
Carlos M. Duarte, Daniel I. Conley, Jacob Carstensen, Maria
Sanchez-Camacho. Return to Neverland: Shifining Baseline Sanchez-Camacho. Return to Neverland: Shititing Baselines
Affect Eutrophication Restoration Targets. Esturies and Costs Heffernan, James B., Dina M. Liebowitr, Thomas K. Frazer, Jason M. Evans, and Matthew J. Cohenen Algal Blooms and Nitrogenenrichment hypothesis in Florida springs: evidence, alternatives,
and adaptive managenent. Ecological A Applications, $20(3), 2010$, and adaptive manage
pp. $816-822$.
0.10
Liebowitz, Dina M., Matthew J Cohen, James B. Hefferman,
Lawrence V. Korhnak, and Thomas K. Frazer. Environmentally.
mediated consumer control of algal proliferation in Florida
mediated consumer control of algal proliferation in Flo
springs. Freshwater Biolog. 2014. $59,2009-2023$.

pchurch, Sam B., Jian Chen, Crystal R. Caini. Springsteds on the
Santa Fe River. A SDIII Global Corporation Repopotr repered for
Alachua County Board of County Connisiont

Acknowledgments
We thank Alachua County and Cohen Lab for their assistance, Camp
Kulaqua support and location acess, Duke Enery for plant donations Uulaqua support and location access. Duke Enerey for plant donations Sean King and Wood. and arst Environmental Services or their
technical expertise, Jennifer Ader for photo contributions and Geraldinin Klarenbererf for statistitial advici. Funding for this project
was provided by the Florida Department of Environnental Protection was provided by the Florida Department of Environmental Protection
and Alachua County. This project is part a larger restoration effort at Hornsby Springs. For more information, please contact

