PRESENTER: **Comparing Water Column Saturation Profiles of** Audrey Goeckner @PondGator **Greenhouse Gases in Constructed and Natural Ponds** ⊠ agoeckner@ufl.edu **UF** IFAS Audrey Goeckner, AJ Reisinger, Ashley Smyth, Meredith Holgerson CLUE CENTER FOR LAND USE EFFICIENCY **INTRO:** Urban stormwater ponds constructed for flood & pollution mgmt METHODS: 21 sites (15 urban + 3 natural clear water + 3 natural may play a large role in the greenhouse gas (GHG) production of carbon humic water) were sampled in May & Aug. 2021. dioxide (CO₂) & methane (CH₄). As the high density of ponds in FL (~74K) Temperature (Celsius) Water & gas samples collected from grows, we must characterize the concentration & drivers of GHGs surface, middle (thermocline) and Surface bottom layers of the water column. Natural Pond Urban Pond Middle Sampling depths based on water puo column stratification (shown left). Bottom Water analyzed for concentrations of CO_2 , CH_4 , total nitrogen (TN),

QUESTIONS: (1) What biological, chemical, physical, or morphological factors influence the concentration of GHGs? (2) Do urban ponds differ biogeochemically (nutrient and GHG cycling) from natural ponds?

Deeper water columns in urban ponds enhance **bottom layer CH₄ production** but may also enhance CH_{4} removal in upper layers, resulting in lower CH₄ emissions.

Natural humic

dissolved organic carbon (DOC),pH algal biomass (Chl-a), & dissolved O_2 Natural clear

%gas saturation = (measured conc/equilibrium conc)*100

Lower light availability from increasing colored DOC in natural sites favor CO₂ respiration. Urban sites likely increasing in algal-derived **DOC indicates enhanced** photosynthesis & CO₂ uptake.

Urban ponds are more alkaline than natural ponds & if high enough can remove free CO_2 ,

an unintentional benefit of urban karst. Natural ponds were more driven by light availability than pH.

RESULTS: (1) Natural humic surface layers were on avg 9x & 11x more saturated in $CO_2 \& CH_4$, respectively, than clear sites. Urban values fell in b/w the members.

			Mean surf	ace layer v	alues sh	own for con	centration
Site	Area (km2) range	Depth (m) range	TN (mg L ⁻¹)	DOC (mg L ⁻¹)	рН	Surface O ₂ (%sat.)	Bottom O (%sat.)
Natural Clear	0.04 to 0.08	3 to 7	0.5	5	5.5	102	68
Natural Humic	0.008 to 0.01	1 to 3	0.9	17	4.2	32	3.6
Jrban	0.003 to 0.01	1 to 9	0.6	10	7.4	96	44
(3 pc) CO ₂ & ositively	CH ₄ v correl	vere ated,	Sit 1000 - • • • • • • • • • • • • • • • • • • •	e Natural-Clea Natural-Hun Urban	ar nic	

DISCUSSION:

SWPs designed with deeper water columns enhance CH_4 oxidation as gas travels upwards. However, we must investigate if underwater pipes delivering warm runoff (heated on pavement) trigger water column