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- OC burial efficiency depends on regional conditions such as maturity of Sedimentary OC burial and stocks will increase after replacement of salt 1) Determine downcore TOC/TN, 6'3C, and concentration of lignin biomarker
the communities marshes by mangroves, because of 1) higher input of recalcitrant to identify sources of OC and their decay patterns.
- Mangroves typically bury higher amount of recalcitrant OC relative to woody OC from mangroves, and 2) higher fraction of stabilized FeR-OC. 2) Evaluate sedimentary OC burial/stocks, %FeR-OC, and their short- and
salt marshes (Fig. 1). 4) Result long-term changes where salt marshes were replaced by mangrove habitats.
- Black mangroves (A. germinans) generally develop larger oxidizing
rhizosphere? (Fig. 1), which potentially 4.1) Bulk %TOC, TOC/TN, 613C 4.3) FeR-OC
3a) [TOC/TN] g 3b) %TOC 52) %FeR-OCInTOC(%)  5b) FeR (umol/g sediment) A. germinans shallow sediment
T > 0 o w0 oo 200 400 - Higher %FeR-OC (Fig. 5a) but lower FeR (Fig. 5b)
5 5 s = - In situ formation of FeR-OC probably by interaction
: : . 10 10 w2 between newly deposited plant detritus and O, from its
- Because of global warming, mangrove habitats are expanding poleward, ; ) extensive oxidizing rhizosphere? (Fig. 5d)
replacing the former salt marsh communities. o § £ 20
: : : : : £ P R. mangle shallow sediment
- This global changes raised a question how these vegetation shifts 5 8 g2 : , ,
. 8 8 9 , 8 ® 30 - Lower %FeR-OC (Fig. 5a) but higher FeR (Fig. 5b)
modified coastal wetland carbon storage and FeR-OC formation. 0 ) - Allochthonous input of soil particles that contained
Avicennia germinans Juncus roemerianus Spartina alterniflora . v FeR but didn’t contain FeR-OC (Fig. 5e)
- - » -27.00 -25.00 -23.00 Sc—)Zlizac—lg.OO -17.00 -15.00 613C-FER-OC (Fig. 5c)
” - Preferential retention of 63C-depleted OC by FeR

- %TOC decreased with depth = gradual decomposition

: , , , 5 = selective preservation of terrestrial OC by FeR
with depth, or input of recalcitrant OC at surface (Fig. 3b)
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Figure 1. Roles of mangroves and salt marshes in coastal OC cycle 4'2) ngnm biomarker A. germinans s.ediment.s . . . o
NV S\ (Ad/AI), o /"";L% O, mﬁn ecdiment 3 5Bd/V - Decrease in C/V (Fig. 4a) and increase in S/V ratio of lignin-
02 07 12 1 15 2 25 o1 02 03 o4 3 6 o 1 2 s s 1 o oos ot os derived phenols ratioin shallower sediments (Fig. 4b)
2) Study areas and methods 5 5
1) Sediment cores were collected, using 2) Determining %TOC, C/N and 6'3C using . . - High [Ad/Al]v at 13-34 cm

PVC push cores, from salt marsh sites [IR-MS, lignin-derived phenols using GC-MS

- 24is higher in the upper part of the core. This reflects greater
recently invaded by R. mangle and (CuO oxidation method>), and FeR-OC

input of vascular plant materials into sediments (Fig.4e)
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Figure 2. Sampling location, mangrove [ronmdvomions et [, U 1) 613C and lignin biomarker indices show higher contributions of mangrove OCin 3) A. germinans establishment potentially increases OC stock in shallow
distribution in Apalachicola bay, and locations of || @i germinans £ Sampling location 4. germinans sediment core) | @ 7 jmm—_r—] shallower sediments of invaded marsh sites. sediments due to input of recalcitrant OC and development of oxidizing

cited Florida OC studies (modified from?) 2) R. mangle habitat might receive OC and FeR from allochthonous sources. rhizosphere that promotes FeR-OC formation.



