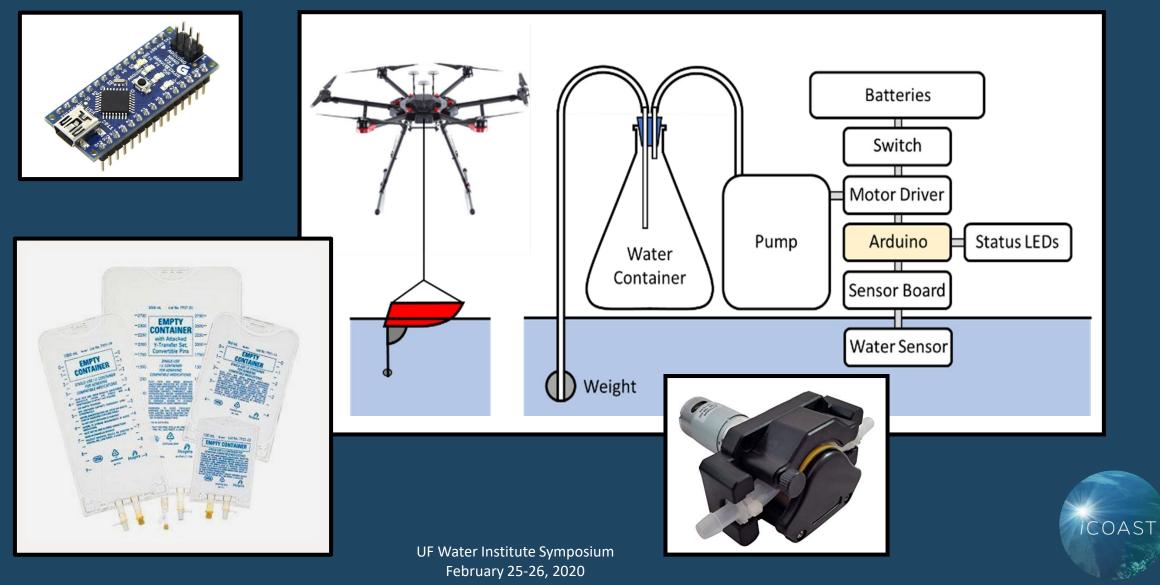
Integrated Sensors with Drones for Water Quality Surveys Unmanned Aircraft Systems (Drones) for Collecting Water Samples

Peter Ifju, Andrew Ortega, Chad Tripp, Jordan Bernstein, Mallori Johnson, Matthew Snyder, Dalton Connelly University of Florida, Unmanned Aircraft Systems Research Program

Unmanned Aircraft Systems Team


Goal: Develop and field a water sampling drone

Challenges:

- Collect water without cross-contamination with other samples
- Collect samples from 12 to 48 inches below the surface
- Large water samples of 1 liter per sample must be collected
- Choppy water and currents where samples are to be collected
- Must be able to operate in modestly windy conditions
- Limitations of altitude hold resolution (plus-or-minus 1 meter typically)
- Payload capacity of the vehicle
- Autopilot must be capable of flying to a specific location and height to collect samples
- Vehicle and payload must be able to take-off and land from a boat or from the shore
- Quick turn-around time between samples
- Time and location of samples must be logged

Schematic of the Unmanned Aircraft System

System in Action

Demonstration of Sampling Capabilities

Spring Break (March 2020) Water Sampling Trip

St. Augustine Wastewater Treatment Plant	Site	Site ID	Latitude	Longitude
	St. Aug. Wastewater Treatment Plant	WWTP	29.87720N	81.30367W
Anastasia Island/Marsh Creek Country Club	St. Aug. Wastewater Treatment Plant DEEP	WWTP-DEEP	29.87720N	81.30367W
	Anastasia Island Country Club	AICC	29.83314N	81.30404W
Mid-point b/t 206 and Anastasia Island/Golf Course	Mid-point	MDPT	29.81107N	81.28106W
	FL 206 Bridge	FL206	29.76860N	81.25815W
	Matanzas Inlet	MAIN	29.71160N	81.23291W
FL-206 Bridge	Whitney Lab Docks	WLDO	29.669249N	81.216506W
	Marineland spray field outflow	MALA	29.66780N	81.21643W
	Mouth of Pellicer Creek	МОРС	29.66431N	81.22892W
	Pellicer Creek Mid-reach	PECR	29.66260N	81.26837W

UF Water Institute Symposium February 25-26, 2020

ŝ

Conclusions

- The basic system has been developed and tested
- We have lots of testing to expose deficiencies in the design
- Spring sampling trip is next week
- Modify things as needed to make the system robust
- Future work on automation
- Work to integrate the sampling drone with full-field imaging drones

Please visit poster #51

Andrew Ortega, "Collecting Water Samples with Drone (sUAS) for Water Quality Surveys"

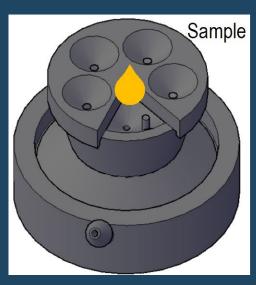
In Situ Detection Platform for Monitoring Water Contamination

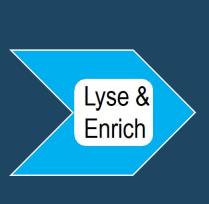
<u>Z. Hugh Fan</u> & Carlos Manzanas Department of Mechanical & Aerospace Engineering Pruitt Family Department of Biomedical Engineering University of Florida (UF) hfan@ufl.edu

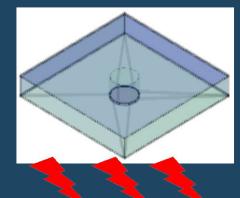
Water and its Importance

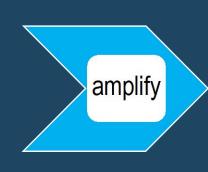
- Surface water
 - Lakes
 - Rivers
 - Coastal areas
- Importance of surface water quality
 - Safe recreational environment
 - Water supply for
 - Drinking
 - Aquaculture
 - Agriculture

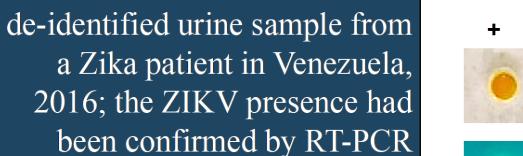
State-of-the-Art of Monitoring Water Contamination

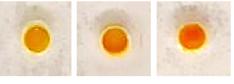

- EPA: *E. Coli* and enterococci are the best indicators of contamination in marine and fresh water
- Culture Methods
 - EPA 1603: membrane filtration/culture (2 hr at 35°C + 22 hr at 44.5°C)
 - IDEXX Colilert:¹ total coliforms, 1 cfu/100 mL in 24 hours
 - Fluidion:² most probable number (MPN), 2-12 hr (depending on concentration)
- DNA Methods
 - EPA 1611: TaqMan[®] qPCR, 3-4 hr, in lab
 - LAMP:³ Magnetic-beads-based DNA + LAMP (30+30 min), 10-100 CFU/mL

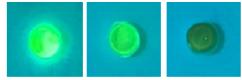

. IDEXX brochure


- 2. Angelescu, et al., J. App. Microbio. 2018, 126, 332-343.
- 3. Lee, et al., *Water Res.*. 2019, 160, 371-379.


qPCR: quantitative polymerase chain reactions LAMP: Loop-Mediated Isothermal Amplification

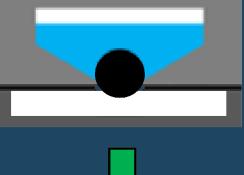

in situ Detection Platform



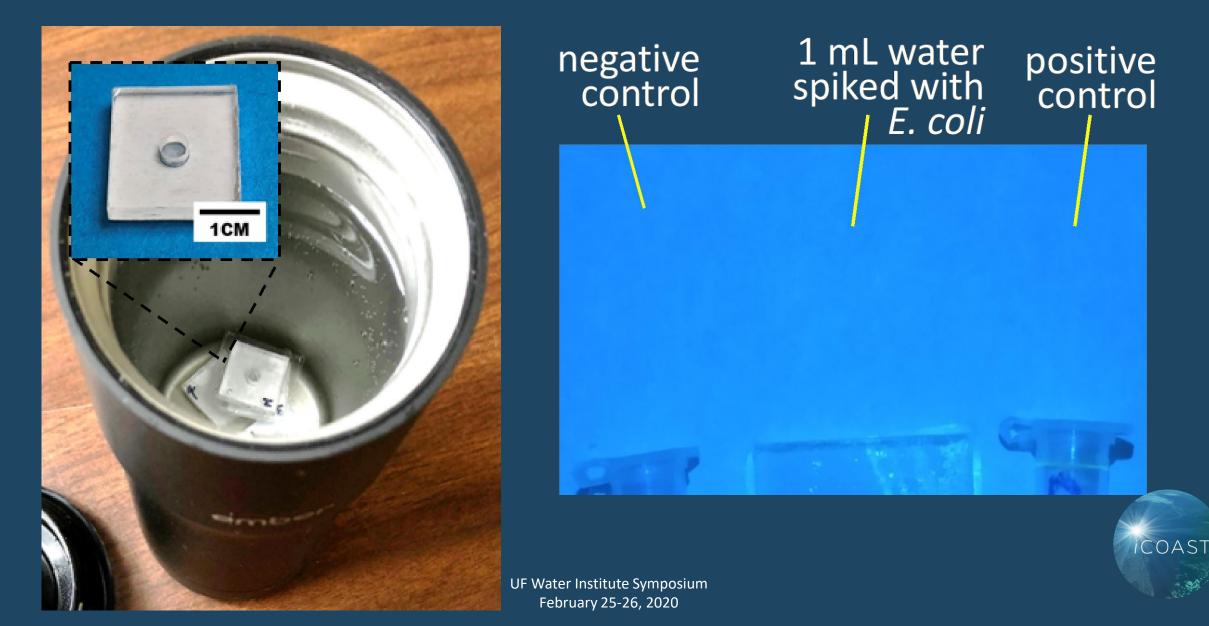


Jiang, et al. Angewandte Chemie I. E., 57, 2018, 17211–17214.

clinical + sample ·

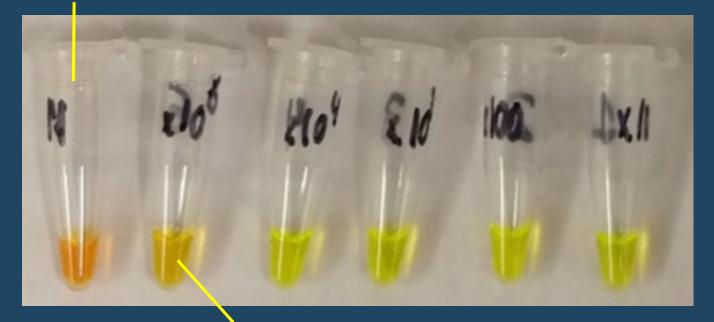


Sample Preparation and Valve-Enabled Procedure


Valve closed

13

Detection Unit and LAMP



14

E. Coli Detection

- Demonstrated detection of *E. Coli* spiked in 1 mL water in the device
 - DH5-alpha
 - K12 MG1655
 - TOP10 Chemically Competent
- Established a process of ~1 hour for DNA enrichment, amplification, and detection (much faster than 1-2 day culture methods)

DH5-alpha *E. coli* spiked in 1 mL water

DNA concentration equivalent to ~30 E. coli bacteria

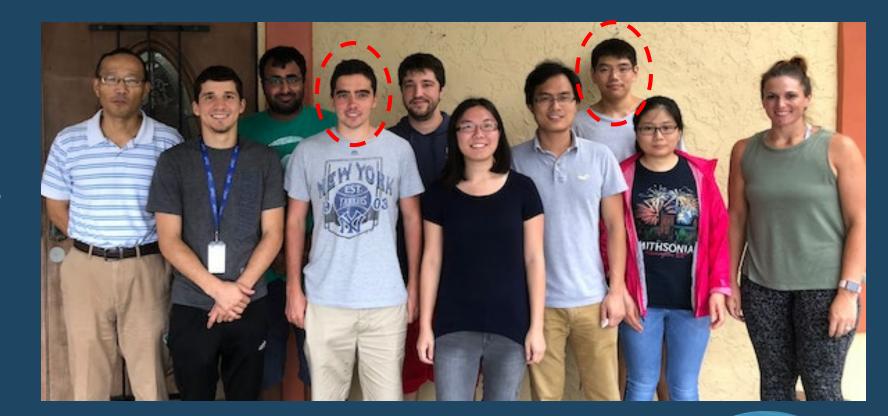
negative

control

Conclusion

- Designed and built in situ detection system for monitoring water contamination
- Demonstrated the detection of 3 E. coli strains using LAMP
- Future plans
 - Test water samples collected during Hurricane Dorian
 - Integrate with a drone for water quality survey

Please visit poster #52


Carlos Manzanas, "Miniaturized Platform for *in situ* Detection of *E. Coli* in Water Samples"

Acknowledgement

- Students
- Postdocs
- Collaborators

♦ Funding

