

Introduction

- **Springs' classification** based on average discharge of water measured in cubic feet per second (cfs):
- **1st magnitude:** ≥100 cfs;
- 2nd magnitude: 10 to 100 cfs;
- 3rd magnitude: 1 to 10 cfs.
- The Floridan Aquifer System provides water to more than 1,000 artesian springs in Florida – largest concentration of freshwater and 1st magnitude springs in the world.
- These locate along 56 counties that form the FSR. o In 2017, sales from crop production in the FSR
- estimated at **3.1 billion USD** (55% of Florida's sales). In 2016, crop irrigation in the FSR used 852 million gallons per day (MGD) of water. 87% was from
- groundwater withdrawal (GWW). Crop fertilizer is a **nitrate-nitrogen** input to land surface which **can overload the soil and leach into** groundwater. Between 2010 and 2014, 13% of estimated nitrogen load to groundwater per year resulted from crop fertilizers In Rainbow Springs.

General objective

 Quantify crop production and its groundwater withdrawals and nitrogen application in the FSR to support water resources management.

Methodology

- A database was constructed in Excel using data from US governmental institutions.
- Crop sales: 2017 Census of Agriculture.
- Water withdrawal: USGS Estimated Use of Water in the US County-Level Data for 2015; FDACS Florida Statewide Agricultural Irrigation Demand Online database; and FDACS Florida Statewide Agricultural Irrigation Demand Geodatabase.
- Nitrogen application or inputs: Literature review on recommendations of nitrogen applications for Florida's crops, and the FDACS Geodatabase on agriculture production in 2016.
- Intermediate assessment for each topic, county, and crop group, and **mapping** using ArcGIS.

Assessing agricultural production and water resources conservation in the Florida Springs Region (FSR)

Silvia Jessica Mostacedo Marasovic – College of Liberal Arts and Sciences – Master of Sustainable Development Practice Program – smostacedomaraso@ufl.edu Advisory Committee: Dr. Stephen Morgan, Dr. Ignacio Porzecanski (University of Florida), Dr. Robert Knight, and MSc. Angeline Meeks (Florida Springs Institute)

Conceptual framework

Study site

Source: FDEP. USGS and FDAC

80 Miles

Results

Source: FDEP.FDACS, and other

80 Miles

Conclusions

A large concentration of the springs is in an area where the Floridan Aquifer is most vulnerable to contamination.

The Suwannee Restoration Area has an important concentration of 1st, 2nd, and 3rd magnitude springs. It intersects with important levels of crop sales, GWW, and nitrogen application.

• In the **Suwannee county**, crop sales ~56 million USD (2017), GWW ~32 MGD (2016), and nitrogen application \sim 7.8 million pounds (2016).

Future directions

• The research results could provide guidance for future planning and management instruments. 5 For future simulation exercises on **nitrogen inputs**, attenuation, and loading into groundwater, there is a need to create **better databases**.

- Better and more frequent data collection, GPS and remote monitoring; and incorporation of
- private and public sources of data (ex. The
- Nitrogen Source Inventory and Loading Tool
- and the Blue Water Audit).

Continuous communication, knowledge dissemination, and adoption of Best Management **Practices** need to continue among the agriculture community and other stakeholders.

Cited literature

o Borisova, T., Olexa, M. T., & Davis, J. (2017). Handbook of Florida Water Regulation: Florida Springs and Aquifer Protection Act. 4. Eller, K., & Katz, B. (2017). Nitrogen Source Inventory and Loading Tool: An integrated approach toward restoration of water-quality impaired karst springs. Journal of Environmental Management, 196, 702-709.

FDEP. (2018). My home: My springs. Retrieved September 15, 2019, from YouTube website: https://www.youtube.com/channel/UC9--XVAsZeazdukr2ySWLDw

FDEP. (2019). Springs. Retrieved September 15, 2019, from https://floridadep.gov/springs/

FSI. (2018). Springs Conservation Plan: Executive Summary. Retrieved September 15, 2019, from https://floridaspringsinstitute.org/wpcontent/uploads/2019/08/Springs-Conservation-Plan-Executive-Summary-FINAL.pdf

• USDA, & NASS. (2017). 2017 Census of Agriculture State Profile: Florida.

