Parameterization of Temporally-Resolved Benthic Nutrient Fluxes in Lake Okeechobee

<u>Jordon Beckler</u>, Owen Silvera, Mason Thackston, Mingshun Jiang, Lynn Wilking, Veronica Ruiz-Xomchuk, Hanna Bridgham, Malcolm McFarland, Tim Moore, and Dennis Hanisak

1: FAU Harbor Branch Oceanographic Institute, Ft. Pierce, FL, USA 2: U. New Hampshire, Durham, NH, USA 3: U. S. Carolina, Columbia, SC, USA 4: Analytical Instrument Systems, Inc, Flemington, NJ, USA

> 2024 UF Water Institute Symposium Gainesville, FL Feb. 21st,2024

Instagram @geochemical.sensing.lab

Partners:

Transp.

nav Jocean

HAB Mitigation Technologies program; Off. Env. Account. &

Lake O sediment nutrient inputs

 100+ years of nut. accumulations (> 60 cm) affect long term water quality

(Brezonik & Engstrom, 1998)

- Diffusive fluxes: PO₄³⁻: sed. internal ≈ external NH₄⁺: sed. internal ≈ 5x external (DIN) (Moore et al. 1998; Fisher et al. 2005)
- Sediment mapping : geographical, decadal patterns (Osborne et al. 2021)
- This project: more focused on temporal dynamics & processes → both nutrient diffusion and resuspension
- Previous Lake O resuspension nutrient work limited to modeling
 → substantial nutrient source (James et al. 1997, JAWRA)

Goals for this presentation:

- Experimentally quantify resuspension fluxes / behavior
- Describe plans to parameterize sediment nutrient fluxes in highresolution predictive HAB models

Seasonal inventories are dynamic and impactful (2021)

Empirical approach to diffusive flux parameterization

Alternative approach – coupled diagenetic modeling

Couple to 3D numerical model to enable responsive sediment dynamics. Disadvantages: Many unknown reactions, and computationally expensive

Fisher et al. 2009

Are diffusive fluxes overrated in Fe-rich turbid lakes?

 SRP fluxes low across sed/H₂O interface unless hypoxic (rare...)

(Moore et al. 1998; Fisher et al. 2005)

- Surface floc layer constantly remobilized & reoxidized (SRP trap)
- Resuspension also directly introduces pore water dissolved nutrients
- Lake O sediment/water mixing experiments observed both SRP addition and removal observed) (Hansen et al. 2009)

Goal: <u>Experimentally</u> parameterize resuspension-derived nutrient fluxes and include in a 3-D model.

Resuspension experiments

Fisher et al. 2009

Biphasic "floc" ($\boldsymbol{\tau}_1$) & bed ($\boldsymbol{\tau}_2$) erosion response

Nutrient behavior during erosion experiments

Time (hours)

Underlying sediment core profiles

Fluxes & erosional depth required for mass balance

Nutrient	Date	Maximum nutrient release (mmol m ⁻²)	$\frac{\sum C(\text{mole } \text{m}^{-2})}{D(\text{cm})}$ (mmol · cm ⁻¹ m ⁻²)	Sediment erosion depth required for release (cm)
SRP	04/26/2022	0.670	0.16	5.2 (deeper than visually resuspended)
	05/29/2022	0	0.06	-
	06/21/2022	0.15 ± 0.1	0.01	>10.5 (deeper than core)
DIN	04/26/2022	1.8	1.47	2
	05/29/2022	2.0	1.70	1.65
	06/21/2022	0.57 ± 0.11	1.14	0.85
DON	04/26/2022	12.6	0.21	>8.5 (deeper than core)
	05/29/2022	-16	0.35	WC sink
	06/21/2022	6.11 ± 2.67	0.47	>10.5 (deeper than core)
DOC	04/26/2022	139.7	10.78	>8.5 (deeper than core)
	05/29/2022	-278	12.59	WC sink
	06/21/2022	139 ± 37	11.51	>10.5 (deeper than core)

Principle Component Analyses: nutrients & shear

SRP behavior during sediment resuspension

DIN release is more conservative

In situ nitrate data from L001 site

Generating a lake nutrient resuspension time series

Instantaneous fluxes binned by critical shear intervals

Annualized fluxes: Diffusive vs. Erosive

Consistent with Moore et al. 1998; Fisher et al. 2005

Fluxes in units of metric tonnes year⁻¹, extrapolated over mud area of lake

	NH ₄ +	SRP	dFe(II)
Diffusive	1,276 (1,101 to 1,447)	609 (331 to 885)	434 (327 to 535)
	14,303 (5,645 to	1,970 (-7,752 to	7,448 (-10,707 to
Erosive	24,084)	10,142)	21,152)
Erosive /			
Diffusive	~11x	~3.2x	~17x

Upper/Lower bounds represent the uncertainty associated with non-consistent accumulation/depreciation nutrient behavior under specific shear conditions

Conclusions

- Resuspension dynamics in geochemical context generally poorly understood, yet can dominate nutrient fluxes
- At a minimum, sediment surface layer geochemistry (Fe/P) should be routinely characterized
- NH₄⁺ release a function of pore water inventory
- Excess DOC/DON released during resuspension (opposite of Fe shielding?)→ Fresh substrate?

Water column DIN controls

 <u>Empirical fluxes</u> may serve as worthwhile starting point, but high resolution (sediment) analytical models likely required for spatial predictions b/c of rapid HAB/sediment feedbacks

Technology to monitor flux dynamics

FLORIDA ATLANTIC UNIVERSIT

SEDIMENT TECHNOLOGIES

- 1. <u>Sediment incubations</u> can include deliberate resuspension to simulate lake
- Ambient water incubations provide critical measurements and allow correction of sediment fluxes for in-water processes (transparent/opaque chamber or day/night incubations → photosynthesis/respiration nutrient behavior discrimination)
- 3. <u>Periodic open-chamber measurements</u> provide ambient water conditions time series

-See Mason Thackston's poste

