Accidental Intervention: Prescribed Burning Alters Tidal Marsh Nitrogen Processing

C. Tatariw¹, T.C. Ledford², E. Rice², J.A. Cherry², B. Mortazavi³

¹Rowan University, ²The University of Alabama, ³Syracuse University

Thank you to Scott Phipps, Jake Dybiec, and Shelby Rinehart for their help!

Salt marshes reduce nitrogen (N) loads to coastal waters through uptake, burial, and microbial denitrification

How do human management practices impact N removal in marshes?

Study system: Weeks Bay NERR

Population Growth

SOURCE: U.S. Census Bureau

Weeks Bay NERR Management Plan 2017-2022

https://baldwineda.com/demographic-data/

Prescribed burning

- <u>Forest</u> management strategy
- Promotes native plant growth
- Supports marsh landward migration
- *Might* result in short-term changes in estuarine water quality...

Conductivity spike right after fire!

Data from NERR Centralized Data Management Office, accessed 02/19/2024

Maybe more ammonium?

Data from NERR Centralized Data Management Office, accessed 02/19/2024

Data from NERR Centralized Data Management Office, accessed 02/19/2024

Question: Does prescribed burning impact N processing in tidal marshes?

Before and After

Experimental Design – Started October 2021

Experimental "Design" – Burned April 2023

Sampling Dates
10/11/2021
11/16/2021
12/7/2021
2/20/2022
3/24/2022
5/24/2022
6/20/2022
9/6/2022
11/8/2022

- Denitrification and DNRA potentials using IPT on sediment slurries
 - Top 5 cm of sediment
 - Nitrate saturated (50 μ M ¹⁵NO₃⁻)
 - Anaerobic
 - 5 PPT artificial seawater
- Aboveground biomass outside of plots
- Porewater sulfide (H₂S)
- Porewater NH₄⁺
- Sediment bulk C and N

Aboveground biomass was 25% lower on-average after the fire

On average, porewater H₂S more than doubled after the fire

*natural log-transformed!

No effect of burning on N-removal, but rates were about 1.4X higher in *Cladium* plots

But there may be a pattern of lower denitrification for *Cladium and Juncus*.....

Effect sizes (Hedges' d) show that burning may have an impact on N removal potential

Burning had a medium negative effect on denitrification potential in *Juncus* and *Cladium plots*

Take-home Message

- Burning impacted key drivers of N-processing, but the actual impacts on Nprocessing *potentials* were variable
- The rhizosphere may be what drives resilience
- For management, we need to link microbial processes to ecosystem fluxes

