

EFFECT OF CORN SILAGE HYBRID CHARACTERISTICS & FERMENTATION ON KEY FORAGE QUALITY METRICS

Joe Lawrence, MS, CCA Allison Kerwin, PhD

Corn Silage Processing Score (CSPS)

Starch

- 1. Content
- 2. Digestibility
- 3. Availability (CSPS)

Corn Silage Processing Score	Starch, % of total on or below the 4.75 mm screen
Optimally Processed	> 70%
Adequately Processed	50-69%
Inadequately Processed	< 50%

Influence of Fermentation

					Days 8	Ensiled					
Experiment	0d	30d	45d	60d	90d	120d	150d	180d	240d	270d	P<
					% of	Starch					
Der Bedrosian et al., 2012 ¹	69		75		77			79	_	82	0.01
Ferraretto et al., 2014a ²	62	72				79			84		0.001
Windle et al., 2014 ¹	54		59		63		68				0.01
Young et al. 2012 ¹			76				79				0.01

					Days	Ensiled					
Experiment	Od	30d	45d	60d	90d	120d	150d	180d	240d	270d	P<
					9	af NDF					
Chemey et al., 20071	56	50						-			0.00
Der Bedrosian et al., 2012 ²	62		60		60			59		59	0.01
Ferraretto et al., 2014 ³	57	56				55		-	56		NS
Hunt et al., 1993 ⁴	73			71				-			NS
Young et al. 2012 ²			61				60	-			0.02

'Ruminal in vitro NDF digestibility at 48 h on samples ground through a 1-mm Udy Mill screen.

'Ruminal in vitro NDF digestibility at 30 h on samples ground through a 2-mm Wiley Mill screen.

'Ruminal in vitro NDF digestibility at 30 h on samples ground through a 1-mm Wiley Mill screen.

'Ruminal in vitro NDF digestibility at 48 h on samples ground through a 2-mm Wiley Mill screen.

Time in the silo effect on corn silage processing score¹

Storage length, days	0	30	120	240	<i>P</i> -value
Ferraretto et al., 2015 – trial 1	50.2	61.1	-	-	0.01
Ferraretto et al., 2015 – trial 2	60.3	63.6	67.2	68.4	0.08
Agarussi et al., 2020	28.8	-	28.8	-	0.97
Saylor et al., 2020	62.4	59.7	64.8	67.7	0.01

¹Corn silage processing score - % of starch passing through the 4.75 mm sieve.

Table Courtesy: Luiz Ferraretto

Influence of Ensiling on the Digestibility of Whole-Plant Corn Silage, Wisconsin Focus on Forage

https://fyi.extension.wisc.edu/forage/influence-of-ensiling-on-the-digestibility-of-whole-plant-corn-silage/

Study Objectives

Evaluate the effects of hybrid characteristics on CSPS at harvest

Understand risk of changes to CSPS during harvest

Evaluate if duration of fermentation alters nutrient metrics

- CSPS
- in-vitro starch digestibility (IVSD; 7 hr, 4 mm),
- neutral detergent fiber after 30 h of fermentation (NDFd30, % of NDFom)
 - CSPS x Fermentation time

Materials and Methods

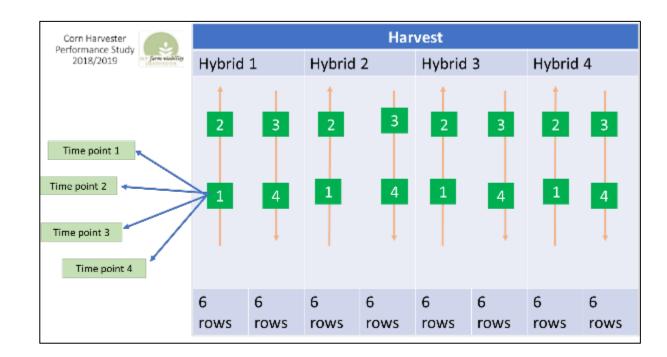
- Crop years: 2018 and 2019
- 4 hybrids planted at 5 test sites in NYS
 - Plot Size: 0.63 acres (0.25 hectares) per hybrid
 - Row Spacing: 30-inch (0.76 m)
- Farms followed best agronomic practices
 - Plant Nutrition
 - Pest Management

Pre-Harvest Data Collection

- Randomly collect 15 stalks of each hybrid
- Separate Ear from Stover
- Dry Matter analysis

Field Layout						
Hybrid 1	Hybrid 2	Hybrid 3	Hybrid 4			
12 rows	12 rows	12 rows	12 rows			

Hybrid Code	Relative Maturity	Hybrid Descriptor	Ear Flex	Plant Height Index			
1	97	Dual Purpose	5 out of 9	5 out of 9			
2	98	Leafy	Flex	9 out of 9			
3	91	Dual Purpose	5 out of 9	4 out of 9			
4	100	Leafy, Floury	Flex	9 out of 9			
* Seed Cor	* Seed Company Descriptors of Hybrids						


Materials and Methods

Harvest

- Collected 4 random samples per hybrid
- Subdivided samples into 4 and randomly assign to 0-, 45-, 90-, or 135-day groups
 - Total of 64 samples per hybrid for 3 locations
 - Only fresh samples were collected at 2 of 5 farms

Post Harvest

- Samples were vacuum sealed and stored in dark room at consistent (room) temperature
- At each timepoint, samples were submitted to Cumberland Valley Analytical Services for analysis

Statistical Analysis

Objective 1: Evaluate the effects of fermentation time on nutrient metrics

- Repeated-measures ANCOVA with fixed effect of fermentation time (PROC MIXED; SAS v. 9.4)
- Covariates included hybrid and year
- Random effect of site-year
- P-values were corrected for multiple comparisons with a Tukey's honestly significant difference test

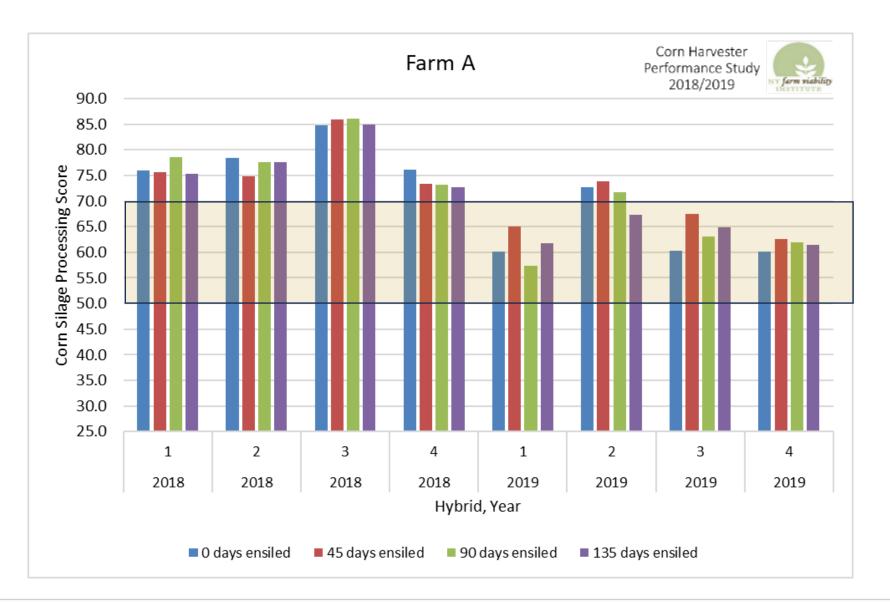
Objective 2: Effect of ear to stover ratio on CSPS for green samples

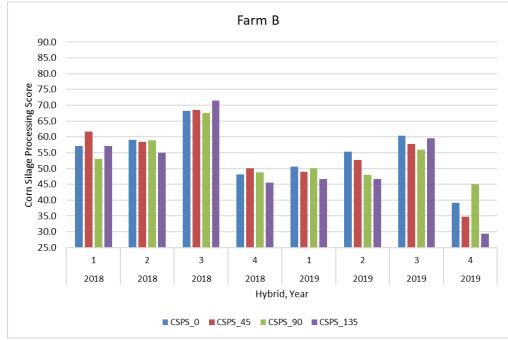
- ANCOVA with fixed effect of ear to stover ratio (PROC MIXED; SAS v. 9.4)
- Covariates included hybrid, DM (whole plant or ear), and year
- Random effect of site-year

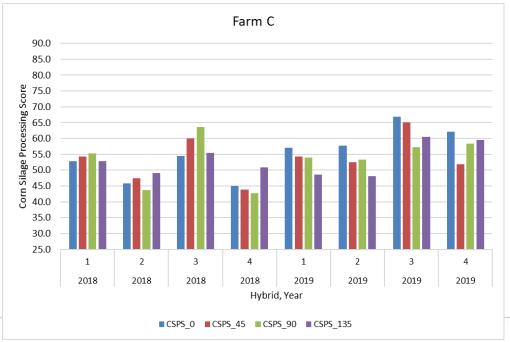
Least squares means and SE for the effect of fermentation time on IVSD, NDFd30, and CSPS

	Fe	rmentation				
Forage Metric	0	45	90	135	SE	<i>P</i> -value
IVSD, % starch	58.2 ^d	63.2 ^c	67.2 ^b	69.4 ^a	1.7	< 0.001
NDFd30, % NDFom	57.4	57.1	57.0	56.8	0.8	0.23
CSPS, % starch	60.3 ^A	60.0 ^{BA}	59.3 ^{BA}	58.4 ^{BC}	5.9	0.07

^{a,b,c,d}Means with different superscripts differ (P < 0.05). ^{A,B,C}Means with different superscripts differ (P < 0.10).







Hybrid x Season Results

Hybrid Characteristics & CSPS

	Unit Change	Resulting Change in CSPS, %*	<i>P</i> -value
Ear to Stover Ratio,	+0.10	+1.70 (± 0.41)	<0.001
Ear DM, %	+1.0	- 0.78 (± 0.30)	0.01
*controlling for ear dry matter			

Corn Silage Processing Score	Starch - % of total on or below the 4.75 mm screen
Optimally Processed	> 70%
Adequately Processed	50 – 69%
Inadequately Processed	< 50%

Ear to Stover Ratio		Range in Ear to Stover Ratio	Resulting Impact on CSPS, %	
<u>Within</u> locat	ion	0.5 to 0.9	8 to 15	
<u>Between</u>	2018	0.2 to 0.9	3 to 15	
Locations	2019	0.6 to 0.9	10 to 15	

Outcomes

Messages to farms

- Continue to strive for Optimal Processing Score in Green Samples
- Changes during harvest (hybrid type, plant maturity) necessitate continual monitoring and adjustments to processing equipment

Extension Materials

- Kernel Processing Information Sheet Series
 - Corn silage kernel processing
 - Effect of corn plant characteristics on corn silage processing scores
 - Impacts of fermentation
 - Industry snapshot
 - Corn plant dry down

https://cals.cornell.edu/pro-dairy/our-expertise/forage-systems

Opportunities for further Research

- Does CSPS at harvest affect how starch changes during fermentation
- Observations from data
 - High CSPS samples (>70)
 - Less change in IVSD across fermentation time
 - Greater reduction in starch content across fermentation time
 - Higher sugar content at each fermentation timepoint
- Follow-up study (Wilder et al., Miner Institute, Northern NY Agricultural Development Program Funding)
 - degree of processing did not significantly affect the content of starch or sugar
 - The hypothesis that this change in starch content was due to degradation into other pools (soluble starch, sugar) was not observed
 - Limitation: narrow range is CSPS (Heavily processed mean: 63.9, Moderately processed mean: 62.3)

https://nnyagdev.org/wp-content/uploads/2022/03/NNYADPCornP2021ReportFINAL.pdf

Thank You!

Joe Lawrence, MS, CCA

Senior Extension Associate

PRO-DAIRY

Cornell University

jrl65@cornell.edu

Allison Kerwin, PhD

Research Associate

Department of Animal Science

Cornell University

abl37@cornell.edu

Project Funding: New York Farm Viability Institute

Project Support: Cornell University Ruminant Nutrition Center (CURC), Miner Institute, Cornell

Cooperative Extension, SUNY Morrisville, Pominville Dairy, Hilltop Divine Dairy, Pioneer, Seedway