Whole Exome Genotyping in Loblolly Pine and Association Analyses

Mengmeng Lu, Carol Loopstra, Konstantin Krutovsky, C. Dana Nelson, Thomas Byram, Tomasz Koralewski, Candace Seeve
To identify the genes best associated with traits of interest, we need large numbers of molecular markers. Until recently, the numbers were insufficient. Most association studies done as part of the ADEPT2 project had less than 1 SNP per 10 genes!

<table>
<thead>
<tr>
<th>Project</th>
<th>Funding</th>
<th>Genotyping Platform</th>
<th>N SNPs</th>
<th>SNP location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADEPT 1</td>
<td>NSF</td>
<td></td>
<td>43</td>
<td>Known genes</td>
</tr>
<tr>
<td>ADEPT 2</td>
<td>NSF</td>
<td>Illumina Infinium</td>
<td>7,216</td>
<td>ESTs</td>
</tr>
<tr>
<td>PINEMAP</td>
<td>USDA-NIFA</td>
<td>Capture-Seq</td>
<td>67,387</td>
<td>Genome-wide</td>
</tr>
</tbody>
</table>
Genetic variation including SNPs can be discovered and genotyped by sequencing genomes or portions of genomes. However – Conifer genomes are too large to sequence in large populations needed for association genetics or genomic selection.
Use exome capture and sequencing to identify single nucleotide polymorphisms (SNPs) in loblolly pine and genotype the ADEPT2 population

- Associate the genotyped SNPs with growth and adaptive traits to discover candidate genes

- Dissecting the genetic basis of cellular phenotypes by association mapping and network construction

- Associate the genotyped SNPs with environmental variables and detect signals of selection which are related to local adaptation
Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.)

The counties of origin of the maternal trees colored by state
Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.)

384 × 3 unrelated trees were planted

Lu et al. (2016) BMC Genomics 17:730.
Workflow of the NimbleGen SeqCap EZ system

Exome genotyping, linkage disequilibrium and population structure in loblolly pine (*Pinus taeda* L.)

Capture probes

<table>
<thead>
<tr>
<th></th>
<th>Nimblegen Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design source</td>
<td>199,723 exon regions (≈ 49 Mbp) in 48,391 high quality tentative genes</td>
</tr>
<tr>
<td>Total probes number</td>
<td>≈ 2.1 million</td>
</tr>
<tr>
<td>Target Region Size mapped on reference assembly v1.01</td>
<td>≈ 46 Mbp</td>
</tr>
<tr>
<td>Feature</td>
<td>55~105 bp DNA single strands</td>
</tr>
</tbody>
</table>
Workflow of the NimbleGen SeqCap EZ system

Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.)

- 10 uniquely indexed samples were multiplexed for capture and sequencing
- ≈ 250 million reads were output from each of 38 lanes.

Sequenced at Texas A&M University Genomics and Bioinformatics Service with 2×125 bp paired-end format using Illumina Hiseq 2500 V4.
Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.)

Capture efficiency

Fraction of capture target bases ≥ depth

Depth
Bi-allelic sites
10X sequencing depth in 90% of individuals
Minor allele frequency ≥ 0.05
972,720 SNPs

Bi-allelic sites
5X sequencing depth in all individuals (no missing data)
Minor allele frequency ≥ 0.01
2,822,609 SNPs
Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.)

Classification for 972,720 SNPs

<table>
<thead>
<tr>
<th>Location</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exon</td>
<td>58 %</td>
</tr>
<tr>
<td>Coding regions</td>
<td>53 %</td>
</tr>
<tr>
<td>5’ UTR</td>
<td>2 %</td>
</tr>
<tr>
<td>3’ UTR</td>
<td>3 %</td>
</tr>
<tr>
<td>Intron</td>
<td>13 %</td>
</tr>
<tr>
<td>Unclassified</td>
<td>29 %</td>
</tr>
</tbody>
</table>
Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.)

Linkage disequilibrium (LD) decay plot

Linkage disequilibrium measure r^2 plotted against the physical distance between all pairs of SNP markers from the same scaffold (left) and between all pairs of SNPs within 400 base pairs.
Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.)

Genetic structure analysis

\[K = 2 \text{ and } K = 7 \] were chosen to explain the population structure
- Use exome capture and sequencing to identify single nucleotide polymorphisms (SNPs) in loblolly pine and genotype the ADEPT2 population

- **Associate the genotyped SNPs with growth and adaptive traits to discover the candidate genes**

- Dissecting the genetic basis of cellular phenotypes by association mapping and network construction

- Associate the genotyped SNPs with environmental variables and detect signals of selection which are related to local adaptation
Association genetics of adaptive and growth traits

Phenotyping

PINEMAP Undergraduate Fellowship Program

Phenotyping

Growth traits:
- Diameter (DIA)

Crown structure traits:
- Specific leaf area (SLA)
- Crown width (CW)
- Branch angle (BA)

Physiology and resistance traits:
- Carbon isotope discrimination ($\Delta^{13}C$)
- Nitrogen concentration (N)
- Pitch canker disease resistance (Quesada et al., 2011)
Association genetics of adaptive and growth traits

Geographical variation among 4 traits
Association genetics of adaptive and growth traits

Marker-Trait Association Analyses

<table>
<thead>
<tr>
<th>Traits</th>
<th>SNP numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific leaf area</td>
<td>5</td>
</tr>
<tr>
<td>Branch angle</td>
<td>2</td>
</tr>
<tr>
<td>Crown width</td>
<td>3</td>
</tr>
<tr>
<td>Stem diameter</td>
<td>4</td>
</tr>
<tr>
<td>Total height</td>
<td>9</td>
</tr>
<tr>
<td>Carbon isotope discrimination</td>
<td>4</td>
</tr>
<tr>
<td>Nitrogen concentration</td>
<td>2</td>
</tr>
<tr>
<td>Pitch canker resistance</td>
<td>7</td>
</tr>
</tbody>
</table>
Association genetics of adaptive and growth traits

Epistasis Analyses

<table>
<thead>
<tr>
<th>Traits</th>
<th>Numbers of SNP-SNP interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch angle</td>
<td>1</td>
</tr>
<tr>
<td>Crown width</td>
<td>2</td>
</tr>
<tr>
<td>Total height in 2014</td>
<td>2</td>
</tr>
<tr>
<td>Carbon isotope discrimination</td>
<td>2</td>
</tr>
<tr>
<td>Nitrogen concentration</td>
<td>1</td>
</tr>
<tr>
<td>Pitch canker resistance</td>
<td>3</td>
</tr>
</tbody>
</table>

11
Association genetics of adaptive and growth traits

Percentage of phenotypic variance for each trait contributed by the SNPs detected by association and epistasis
Association genetics of adaptive and growth traits

<table>
<thead>
<tr>
<th>Location</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding region – non-synonymous</td>
<td>12 change in AA</td>
</tr>
<tr>
<td></td>
<td>2 change to stop</td>
</tr>
<tr>
<td>Coding regions -synonymous</td>
<td>6</td>
</tr>
<tr>
<td>3’ or 5’ UTR</td>
<td>2</td>
</tr>
<tr>
<td>3’ or 5’ potential regulatory regions</td>
<td>5</td>
</tr>
<tr>
<td>Intron</td>
<td>3</td>
</tr>
<tr>
<td>Unclassified</td>
<td>6</td>
</tr>
</tbody>
</table>
Use exome capture and sequencing to identify single nucleotide polymorphisms (SNPs) in loblolly pine and genotype the ADEPT2 population

Associate the genotyped SNPs with growth and adaptive traits to discover the candidate genes

Dissecting the genetic basis of cellular phenotypes by association mapping and network construction

Associate the genotyped SNPs with environmental variables and detect signals of selection which are related to local adaptation
Dissecting the genetic basis of cellular phenotypes by association mapping and network construction

Cellular phenotypes

✓ Expression of 111 xylem/wood development genes (Palle et al., 2011)

✓ Expression of 88 disease- and drought-responsive genes (Seeve 2010)

2,580 associations, including 2,434 SNPs and expression of 193 genes

Data was acquired under the ADEPT2 grant from the National Science Foundation (DBI-0501763; IOS-PGRP-0501763)
Dissecting the genetic basis of cellular phenotypes by association mapping and network construction

2,580 associations, including 2,434 SNPs and expression of 193 genes
Are there large haplotype blocks?
Dissecting the genetic basis of cellular phenotypes by association mapping and network construction

Cellular phenotypes

✓ Concentration of 82 metabolites (Eckert et al., 2012)

536 associations, including 536 SNPs and 53 metabolite concentrations

Data was acquired under the ADEPT2 grant from the National Science Foundation (DBI-0501763; IOS-PGRP-0501763)
Dissecting the genetic basis of cellular phenotypes by association mapping and network construction.

536 associations, including 536 SNPs and 53 metabolite concentrations.
Dissecting the genetic basis of cellular phenotypes by association mapping and network construction

Candidate transcription factors
Dissecting the genetic basis of cellular phenotypes by association mapping and network construction

Network plot connecting SNPs, gene expressions and metabolites
Dissecting the genetic basis of cellular phenotypes by association mapping and network construction

SNP#33 resides in transcription factor GAMYB

Associated with expression of:

Endochitinase (wood development)

Laccase 8 (Lignin biosynthesis enzyme)

MYB4: wood development transcription factor

TC4H: Lignin biosynthesis enzyme

ABI1: Drought signaling

PtEMB2: Drought-related (LEA)
Use exome capture and sequencing to identify single nucleotide polymorphisms (SNPs) in loblolly pine and genotype the ADEPT2 population

Associate the genotyped SNPs with growth and adaptive traits to discover the candidate genes

Dissecting the genetic basis of cellular phenotypes by association mapping and network construction

Associate the genotyped SNPs with environmental variables and detect signals of selection which are related to local adaptation
Associations with environmental variables

- Annual temperature

- Annual precipitation

Climate data is from Eckert et al. 2010
Software “Vegan” was used to test how much of the genetic variation detected by different methods can be explained by climate, geography or both.

63% of variation in 375 SNPs can be explained by climate alone.

Geography is not important for these 375 SNPs.

These SNPs may be useful in seed transfer decisions

Many of these SNPs are in genes related to resistance to abiotic stresses.
Conclusions

- Our results demonstrated the efficiency of exome capture for genotyping a species with a large, complex genome.

- The highly diverse genetic variation reported in this study provides a valuable resource for loblolly pine breeding through marker-assisted selection and genomic selection.

- Identification of candidate genes will facilitate elucidation of the genetic architecture of the loblolly pine traits and contribute molecular tools for selection of loblolly pine genotypes adapted to changing climate scenarios.
Acknowledgements

Texas A&M group: Dr. Carol Loopstra, Dr. Konstantin Krutovsky, Dr. Tom Byram, Dr. Claudio Casola, Dr. Tomasz Koralowski, Dr. Jason West, Dr. Jason Vogel, Dr. Fred Raley, Jeffery Puryear, Nathalie Reilly

PINEMAP group members: Dr. Tim Martin, Dr. Ross Whetten, Dr. Dana Nelson and many others

PINEREFSEQ project: Dr. Jill Wegryn, Dr. David Neale, Dr. Keithanne Mockaitis, et al.

ADEPT2 project: Dr. David Neale, Dr. Barry Goldfarb, Dr. Jill Wegryn, Dr. Andrew Eckert, Dr. Carol Loopstra, Dr. Tom Byram, Dr. Sreenath Reddy Palle, Dr. Candace Seeve, Dr. Patrick Cumbie, Dr. John Davis, Dr. Tania Quesada, et al.

Harrison Experimental Forest at Southern Institute of Forest Genetics: Dr. Dana Nelson, Dr. Vikram Chhatre, Gay Flurry, Chance Parker, Chuck Burdine

This study was funded by the Pine Integrated Network: Education, Mitigation, and Adaptation Project (PINEMAP), a Coordinated Agricultural Project funded by the USDA National Institute of Food and Agriculture, Award #2011-68002-30185.