

Metabolomics approaches for tracking biotic and abiotic stress performance in tree improvement programs

Anna Conrad¹, Jared Westbrook², Tatyana Zhebentyayeva³, Luis Rodriguez-Saona⁴, Pierluigi Bonello⁴, Joseph James⁵, Steven Jeffers³, Paul Sisco⁶, Frederick Hebard⁶, Laura Georgi², Margaret Staton⁷, Jean-Marc Audergon⁸, Veronique Decroocq⁹, Zongrang Liu¹⁰, Christopher Dardick¹⁰, C. Dana Nelson^{1,11}, and Albert Abbott¹

¹University of Kentucky, Forest Health Research and Education Center, ²The American Chestnut Foundation, ³Clemson University, ⁴The Ohio State University, ⁵Chestnut Return Farm, ⁶Retired-The American Chestnut Foundation, ⁷University of Tennessee, ⁸Institut National de la Recherche Agronomique, Avignon, ⁹Institut National de la Recherche Agronomique, Bordeaux, ¹⁰USDA-ARS Appalachian Fruit Research Station, ¹¹USDA-FS Southern Research Station

Outline

- An introduction to metabolite-based screening
- Evaluating chemical fingerprinting as a tool to screen chestnut for disease resistance
- Targeted metabolomics to track developmental progression in peach and apricot
- Conclusions

Outline

- An introduction to metabolite-based screening
- Evaluating chemical fingerprinting as a tool to screen chestnut for disease resistance
- Targeted metabolomics to track developmental progression in peach and apricot
- Conclusions

Plant secondary metabolites (PSMs)

- PSMs in particular are known for their association with tree stress response
- Types and amounts are tree-species dependent
- Temporally and spatially variable

Chemical biomarkers

- Certain chemicals may be associated with a trait of interest
 - e.g. disease resistance/susceptibility
- Goal is to identify chemicals that may serve as biomarkers
- In some cases, statistical models can be developed to predict the trait based solely on a tree's chemical composition

ages from: http://www.wikipedia.or

https://www

Metabolite-based screening approaches

- Identify and quantify specific metabolites or measure general profiles
- Different tools for different objectives/questions
- Examples of different analytical approaches include:
 - FT-IR spectroscopy
 - HPLC-MS

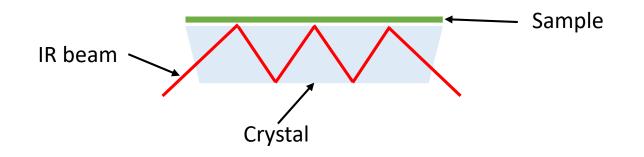
Overall objectives

- Evaluate general metabolomic profiles for the identification of chemical fingerprints linked to pathogen resistance in American x Chinese chestnut hybrids
- Evaluate specific intermediates within the phenylpropanoid pathway as biomarkers for developmental progression linked to annual climatic cycling in fruit trees

Outline

- An introduction to metabolite-based screening
- Evaluating chemical fingerprinting as a tool to screen chestnut for disease resistance
- Targeted metabolomics to track developmental progression in peach and apricot
- Conclusions

What is chemical fingerprinting?


- **Chemical fingerprinting** is a comprehensive analysis of all the chemicals present within a given sample
- Individual chemicals are not separated, identified, or measured
- Provides a "snap-shot" of the chemical composition of a given tissue at a given time

Fourier transform infrared spectroscopy

- Fourier transform infrared (FT-IR) spectroscopy is one method of chemical fingerprinting
- FT-IR spectroscopy measures how a sample absorbs light over a wide spectral window
- Differences in chemical composition/concentration will affect the FT-IR spectrum

FT-IR spectrometers

Benchtop spectrometer

"Portable" spectrometer

Handheld spectrometer

Chestnut chemical fingerprinting

Evaluate if chemical fingerprinting can be used to screen hybrid chestnut for disease resistance prior to infection with chestnut blight or Phytophthora root rot

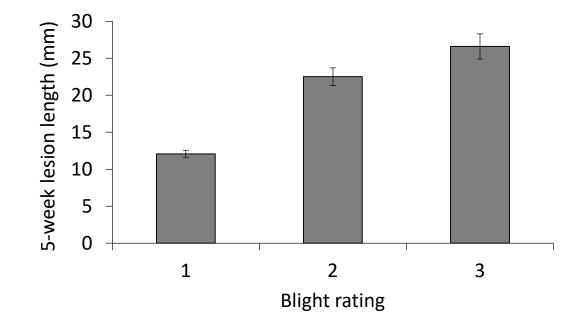
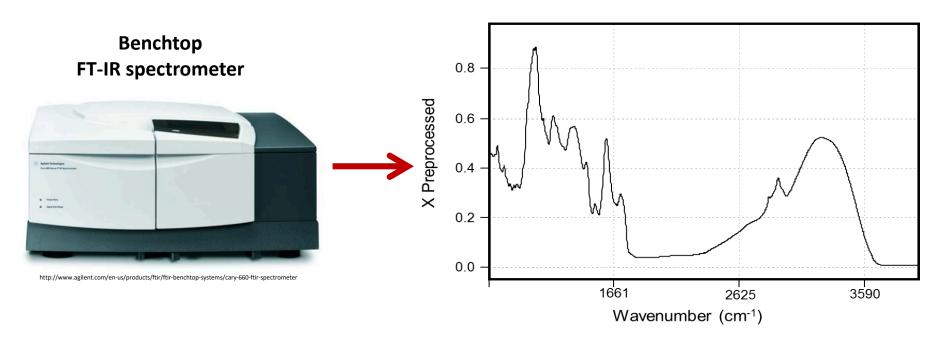
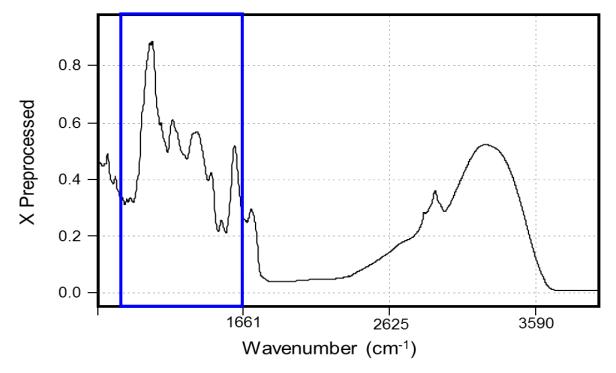



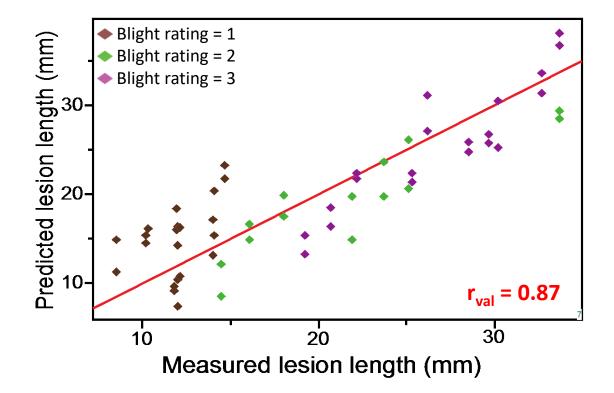
Photo credit: Linda Haugen, USDA Forest Service, Bugwood.org


Phenotypic variation is necessary to build predictive models for disease resistance

Average (± standard error) lesion length of BC_3F_3 hybrids derived from Clapper for each blight rating group (N = 41). Phenotypic data and tissue samples provided by J. Westbrook (TACF).


Chestnut chemical fingerprints

A representative hybrid chestnut spectrum collected from the mid-infrared region.


Focus on a specific spectral region

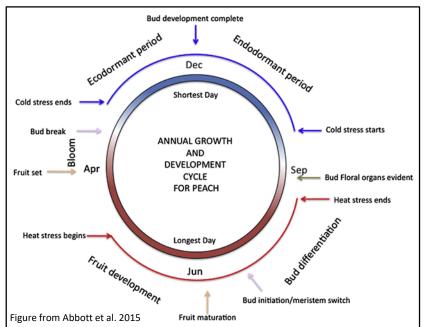
For blight analysis, focused on spectral range: 901 – 1622 cm⁻¹.

Susceptibility of 'Clapper' hybrids to blight can be estimated using spectral data

Correlation plot from 7-factor partial least squares regression analysis of Clapper data set showing the relationship between measured and predicted lesion lengths, based on transformed spectral data. N = 55, with 2 technical replicates per biological replicate and outliers trimmed based on preliminary analysis.

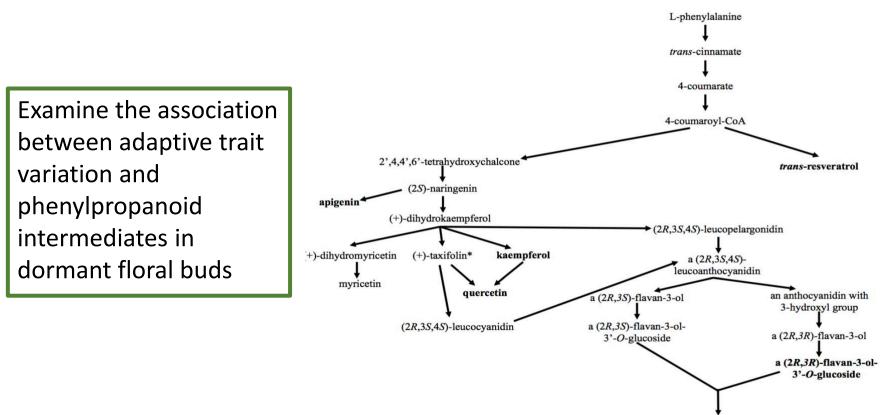
Application of chemical fingerprinting

- Chemical fingerprinting has the potential to be a useful tool for screening hybrid chestnut for disease resistance
- Additional evaluations are planned for summer 2017
- Potential for more highthroughput analysis in the field/forest



Outline

- An introduction to metabolite-based screening
- Evaluating chemical fingerprinting as a tool to screen chestnut for disease resistance
- Targeted metabolomics to track developmental progression in peach and apricot
- Conclusions


Developmental progression and adaptive traits

- Phenology is the study of cyclic events and the influence of climatic and seasonal variability on these events
- Dormancy, bloom date, and chilling requirement are examples of adaptive phenological traits
- Trait variability may be of interest to breeding programs

Identifying chemical markers for developmental progression

a proanthocyanidin

Simplified phenylpropanoid biosynthetic pathway in peach.

Adaptive traits

Species	Phenotype	Variety/Individual
Peach	Low-chill	A209
	Low-chill	A340
	High-chill	A318
	High-chill	A323
Apricot	Early flowering	A2312
	Early flowering	A2137
	Early flowering	A1956
	Late flowering	A660
	Late flowering	A1267

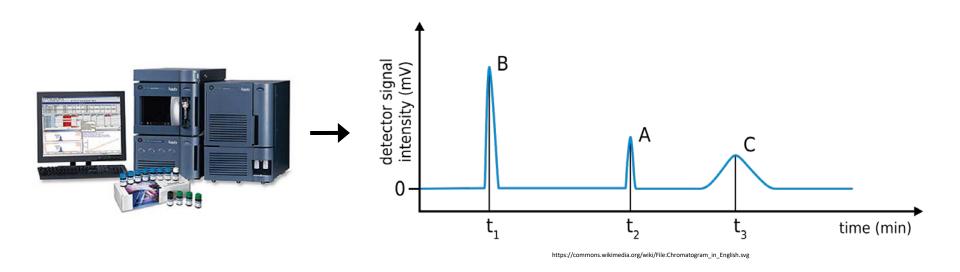
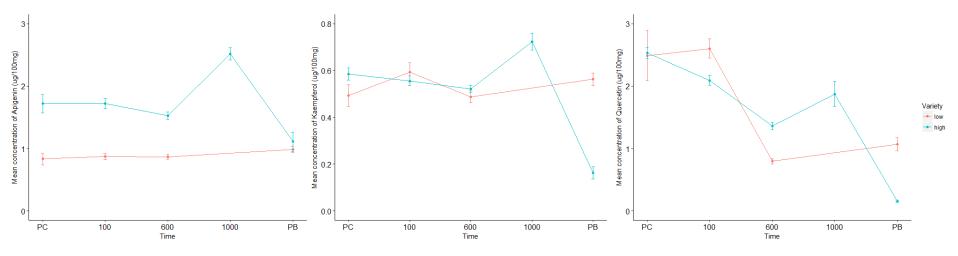
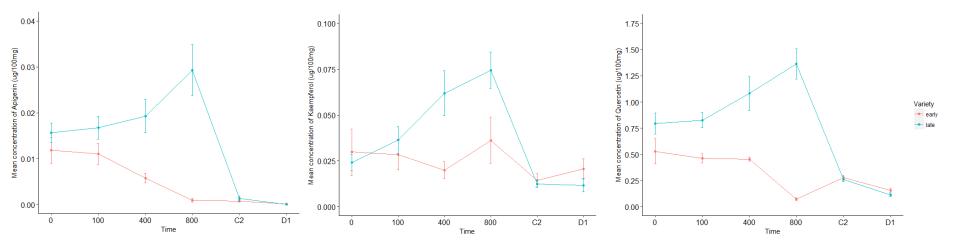


Photo credit: (TOP) Carroll E. Younce, USDA Agricultural Research Service, Bugwood.org; (BOTTOM) Howard F. Schwartz, Colorado State University, Bugwood.org


Targeted metabolomics analysis

Flavonoids: apigenin, kaempferol, quercetin **Flavan-3-ols**: epicatechin-3'-*O*-glucoside; Procyanidin B1, B2, B3 **Stilbene**: resveratrol


Flavonoid concentrations change during dormancy and are impacted by tree genotype in peach

Concentrations of flavonoid aglycones, apigenin, kaempferol, and quercetin, were significantly affected by the interaction of time (at 100, 600, and PB) and chilling requirement (i.e. genotype). Repeated measures ANOVA (P < 0.05).

A similar pattern is observed in apricot

Concentrations of flavonoid aglycones, apigenin, kaempferol, and quercetin, were significantly affected by the interaction of time and chilling requirement (i.e. genotype). Repeated measures ANOVA (*P* < 0.05).



Phenylpropanoids as biomarkers for developmental progression

- Concentrations of phenylpropanoid intermediates change as dormancy progresses
- Pronounced differences in concentration between endodormant and post-dormant buds
- Timing of changes is impacted by phenotype/genotype

Changing in response to environmental cues?

Resveratrol in peach (**A**) and apricot (**B**) buds during dormancy in trees that varied in chill requirement (CR) and bloom date (BD). **Red**: low. **Blue**: high.

Concentrations of resveratrol are known to be impacted by changes in water availability

Application of chemical biomarkers

- Alternative method for determining developmental stage
- Predict low versus high chill genotypes/phenotypes

Photo credit: University of Georgia Plant Pathology , University of Georgia, Bugwood.org

Outline

- An introduction to metabolite-based screening
- Evaluating chemical fingerprinting as a tool to screen chestnut for disease resistance
- Targeted metabolomics to track developmental progression in peach and apricot
- Conclusions

Conclusions

- Different metabolomics approaches can be used to generate chemical phenotypes (chemotypes) of trees
- Chemotypes may be associated with trait of interest
 - Disease resistance/susceptibility (e.g. chestnut)
 - Developmental progression (e.g. peach and apricot)
- Application for tracking biotic and abiotic stress performance in tree improvement programs

FHC

the

Acknowledgements

- Albert Abbott
- Dana Nelson
- Jared Westbrook
- Tetyana
 Zhebentyayeva
- Steven Jeffers
- Pierluigi Bonello
- Luis Rodriguez-Saona
- Paul Sisco
- Joe James
- Laura Georgi
- Fred Hebard

- Meg Staton
- Jean-Marc Audergon
- Veronique Decroocq
- Zongrang Liu
- Christopher Dardick
- David H. Murdock Research Institute

Funding provided by USDA-NIFA-AFRI and American Chestnut Foundation