Benchmarking gains from planting genetically improved loblolly pine

Presenter: Melissa Shockey Advisor: Dr. Bronson Bullock

Objectives

- Evaluate the stand-level properties of enhanced genotypes across a range of genetic families with different levels of genetic homogeneity (HS, FS, Clones)
 - Diameter distributions
 - Height-diameter relationships
 - Variation
 - Volume
- Re-measurement data will be evaluated to see how the stands are developing over time

Introduction

- Around 30 million acres of planted Loblolly pine in the SE
 - Vast majority are genetically improved
- Stands with different genetic backgrounds lead to different stand characteristics over time
- Need to develop benchmark for comparison to see if improvement gains are being met

Methods

- Data from five designed research trials containing single genotype block plot plantings across a range of enhanced genetics with multiple measurements over time will be used to assess changes in stand structure over time. (Pre-thin)
 - Physiographic regions represented from the southeast U.S.:
 - Piedmont
 - Lower Coastal Plain
 - Upper Coastal Plain
 - One commonly planted, well-tested, firstgeneration open-pollinated (OP) family was planted in all studies and will serve as the baseline for a comparison among genotypes.

Methods

- Datasets—PMRC
 - Elite Variety Block Planting Study
 - Est. 2007
 - Improved Planting Stock & Vegetation Control Study
 - Est. 1986-1987
 - Clonal Block Plot Installations
 - Installations 20 and 21: High-end genetics by density: Est. 2005
 - Installation 23: 2nd gen block plot study: Est. 2001
 - Installation 26: MCP vs. OP block plot study: Est. 2003
 - Coastal Plain Culture-by-Density Study
 - Est. 1995-1996
 - Consortium for Accelerated Pine Production Study (CAPPS)
 - Est. 1987

Data Attributes

• Silviculture

- Herbgen
 - Herbicide
 - No Herbicide
- CAPPS
 - Control
 - Fertilization
 - Herbicide
 - Fertilization / Herbicide
- Culture/Density
 - Operational
 - Intensive
- Guyton
 - Fertilization/ Herbicide
- CAFS
 - Herbicide
 - No Herbicide

Data Attributes

Planting density

- Herbgen
 - 700-750
- CAPPS
 - 680
- Culture/Density
 - 300-1800
- Guyton
 - 435-726
- CAFS
 - 388-538

Data Attributes

Site Index

- Herbgen
 - 60's-70's
- CAPPS
 - 60's-80's
- Culture/Density
 - 70's-90's
- Guyton
 - 70's
- CAFS
 - 70's-90's

Methods

- Summary statistics
 - Average height and diameter per plot
 - Presence or absence of fusiform rust at earliest ages
 - Sawtimber quality scores evaluated at latest ages
 - Variation in measurements of height and diameter

Rust occurrence—earliest age available

CAPPS 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% THM TIF WCD wcw LOC

Sawtimber Scores—latest ages available

Guyton

Coefficient of Variation (DBH)

Culture by Density

Guyton

13 15

11

Coefficient of Variation (Height)

Culture by Density

Guyton

Diameter Distribution—Herbgen

Weibull Distribution

- Flexible and can assume a variety of unimodal shapes making it useful to describe diameter distributions
 - 2 and 3 parameter distributions were fit to data
 - 2 parameter work is shown in the following slides
 - Kolmogorov-Smirnov test (KS test) indicated that the 2 parameter distribution was a good fit to the data

DBH

Two Parameter Weibull-Distribution—DBH

Two Parameter Weibull-Distribution

- Follow methods of Bullock and Burkhart, 2002 to model Weibull parameters
- Parameter recovery techniques were used to derive the shape and scale parameters.
 - The 25th and 97th percentiles of the empirical diameters were modeled as a function of: Age, basal area per hectare, and planting density

$$ln(\widehat{D}_i) = b_0 + b_1 ln\left(\frac{BA}{TPH}\right) + b_2 ln(A)$$

Diameter 25th and 97th percentiles

Volume

Future Work

• Continue to evaluate stand characteristics of block plots across a variety of genotypes and genetic improvement over time.

Characteristics

- Diameter distribution
- Height-Diameter relationships
- Volume
- Rust occurrence
- Sawtimber scores
 - Forking
- Genetics
 - Half-Sib
 - Full-Sib
 - Clonal

Acknowledgments

- Bronson Bullock (UGA),
- Cristian Montes (UGA),
- Mike Kane (UGA),
- Rafael De La Torre (ArborGen)
- PMRC Members

Questions?