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Fit all SNPs in a prediction model
Y =  SNP + e
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Meuwissen et al. (2001) Genetics 157: 1819-1829
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QTL QTL QTLQTL QTL QTL

Lower Ne ~ lower allelic range
Higher LD = lower resolution
Application to breeding

Higher Ne ~ higher allelic range
Lower LD = higher resolution
Application to discovery of 
gene function / functional 
genomics
Markers needed ≈ 1M+Markers needed ≈ 10-20/cM

GWS
Genome-Wide Selection

GWAS
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Genomic Selection in Conifers
• "Comparing CLonal Lines on 

Experimental Sites = CCLONES"
• 900 replicated loblolly pine clones 

developed from 62 elite full-sib 
families

• Ne ≈ 40
• Four field locations
• ~3 SNP markers/cM

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 16 17 18 19
2 6 18 17 20 18 19 22
3 34 23 19 19
4 69 37 15
5 58 19 18 20 21
6 15 10 19 19 18
7 45 11 64 21 19
8 50 56 18 19 21
9 40 26 20
10 25 49 21
11 39 44 18 21
12 28 21 19 21
13 35 41 19 19 21
14 46 65 18
15 7 68 20 22
16 70 38 22 21
17 16 36 42 3 31
18 27 60 0 21 22
19 1 22 22 15
20 30 57 21 20 21
21 13 29 19
22 8 19 18 20
23 48 67 20 18 20
24 51 55 17
25 66 43 62 21 19
26 9 18 19
27 54 31 32 20
28 33 52 21 14 22
29 3 2
30 12 53
31 19
32 61 4

BF Grant

Cuthbert

Nassau

Palatka

de Almeida Filho et al. Heredity. 2016 Jul;117(1):33-41. 
Muñoz PR et al. Genetics. 2014 Dec;198(4):1759-68. 
Resende MF Jr et al. Genetics. 2012 Apr;190(4):1503-10. 
Resende MF Jr et al. New Phytol. 2012 Feb;193(3):617-24. 

Márcio Resende Jr. Patricio Munoz
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Trait category Trait Methods
RR-BLUP BLASSO Bayes A Bayes Cπ

Growth Height 0.39 0.38 0.38 0.38
Diameter 0.46 0.46 0.46 0.46

Development

Crown width 0.48 0.46 0.47 0.47
Branch diameter 0.27 0.25 0.27 0.27

Branch angle 0.51 0.51 0.51 0.51
Root number 0.24 0.26 0.25 0.24

Disease 
resistance

Rust 0.29 0.28 0.34 0.34
Rust volume 0.23 0.24 0.28 0.29

Wood 
quality

Stiffness 0.43 0.39 0.42 0.42
Lignin 0.17 0.17 0.17 0.17

Late Wood 0.24 0.24 0.23 0.24
Density 0.20 0.22 0.23 0.22

C5C6 0.26 0.25 0.25 0.25

Resende et al. Genetics 190:1503-10.

Genomic Selection Accuracies in CCLONES



Diameter Rust volume

Trait Methods
RR-BLUP BLASSO Bayes A Bayes Cπ RR-BLUP B

Rust 0.29 0.28 0.34 0.34 0.33
Rust volume 0.23 0.24 0.28 0.29 0.37

Resende et al. Genetics 190:1503-10.

Genomic Selection Accuracies in CCLONES



How stable are prediction models across years?
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How stable are prediction models across sites?

DBH Nassau Palatka BFGrant Cuttberth
Nassau 0.71
Palatka 0.70
BFGrant 0.63

Cuttberth 0.57

Genomic Selection Accuracies in CCLONES



How stable are prediction models across sites?

DBH Nassau Palatka BFGrant Cuttberth
Nassau 0.71 0.44
Palatka 0.48 0.70
BFGrant

Cuttberth

Genomic Selection Accuracies in CCLONES



How stable are prediction models across sites?

DBH Nassau Palatka BFGrant Cuttberth
Nassau
Palatka 0.11
BFGrant

Cuttberth

550 Km

Genomic Selection Accuracies in CCLONES



Trait Site h (BLUP) h (GS) Efficiency
Increase relative 
to phenotypic 
selection (%)

DBH B.F. Grant 0.79 0.75 1.90 90
Cuthbert 0.75 0.73 1.95 95
Nassau 0.85 0.65 1.53 53
Palatka 0.81 0.67 1.65 65

HT B.F. Grant 0.74 0.77 2.08 108
Cuthbert 0.68 0.74 2.18 118
Nassau 0.80 0.64 1.60 60
Palatka 0.85 0.67 1.58 58

Genetic Gain Relative to Phenotypic Selection

• Increase in genetic gain using genomic selection relative to 
phenotypic selection.



Will this work (next generation) in forestry?
Of course, it worked with…



Unfortunately, breeding trees is not the same as 
breeding chicken...



• Genotype by environment interaction
Prediction models apply to narrow regions

• Low multiplier
Many suppliers, horizontal market

• High cost of genotyping
Scale and affordability

• Low heritabilities
Better training populations needed

• Slow breeding
Slow translation of science to application

What are the threats  to the application of 
genomics/genome-wide selection in forestry?
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High cost of genotyping – imputation or other solutions

Crop science, vol. 57, 2017
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Are these factors really limiting?

Species Cycle Current 
Populations Status

Slash 3 Main  - 300
Elite – 60

3rd cycle test 
planted 2011-12

Longleaf 1 Wild selections 
– 1000 Not active

Loblolly 2 Main - 150 2nd cycle test 
planted 2012-13

Sand 1 Wild selections 
- 143 Not active

Hybrids 1 60 – F1 Non active

Funded by the joint USDA/DOE Plant 
Genomics for Bioenergy program (2013-

67009-21200)
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• Historical data in other systems suggests that GWS is applicable 
to forestry

• Preliminary data in conifers and other tree species support that 
expectation

• However, the uniqueness of tree breeding will impose limitations 
that may slow the application of GWS

• Which scenario will we find?

Summary

Time

Ad
op

tio
n



• Historical data in other systems suggests that GWS is applicable 
to forestry

• Preliminary data in conifers and other tree species support that 
expectation

• However, the uniqueness of tree breeding will impose limitations 
that may slow the application of GWS

• Which scenario will we find?

Summary

Time

Ad
op

tio
n



Chris Dervinis
Rodrigo Santos (UF - PMCB)
Janeo E. de Almeida Filho (UFV)
João F.R. Guimarães (UFV)
Gabi Nunes Silva (UFV)
Patrício Munoz (Hort. Sciences)
Esteban Rios (Agronomy)
Marcio Resende (RAPiD now UF)

Acknowledgements

Forest Genomics Laboratory @ForestGenomics

Salvador Gezan
Gary Peter
Greg Powell
Coop members

This project was funded by the joint 
USDA/DOE Plant Genomics for Bioenergy 

program (2013-67009-21200)


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Summary
	Summary
	Acknowledgements

