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2006 Map

After USDA Plant Hardiness Zone Map, USDA Miscellaneous National Arbor Day Foundation Plant Hardiness Zone Map
Publication No. 1475, Issued Januay 1990 published in 2006.
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No. 34. Complete destruction of chestnut trees in a nearly pure stand. Many
of the trunks have lost their bark. Scene in FForest I'ark, near Brooklvn, XNew
York—Photograplh by Prof. Collins, (1912)
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1990’s 2010’s 2000’s

QTL Genome-wide GWAS
selection
Parents Breeding parents Ancestral population
P1 p2 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
Current population Current population Current population

1 2 3 4 5 n 1 2 3 4 5 n 1 2 3 4 5 n



Genome-Wide Selection

Training
population

Phenotypes \k Genotypes

Fit all SNPs in a prediction model y/;lidation

Y=SNP+e ,\_/

Define multi-loci models
to predict phenotypes

Meuwissen et al. (2001) Genetics 157: 1819-1829



Genome-Wide Selection

Training
population

Phenotypes Genotypes

Fit all SNPs in a prediction model
Y= SNP +e

Define multi-loci models
to predict phenotypes

Meuwissen et al. (2001) Genetics 157: 1819-1829

Application in early MAS
Generation 3+

—>

Application in early MAS
Generation 2

—>

Application in early MAS

Generation 1

Training
population



GWS GWAS

Genome-Wide Selection Genome-Wide
Association Studies

S —— R —

QTL QTL QTL QTL QTL QTL

Lower N, ~ lower allelic range Higher N, ~ higher allelic range
Higher LD = lower resolution Lower LD = higher resolution

Application to breeding Application to discovery of
gene function / functional

genomics
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GWS GWAS

Genome-Wide Selection Genome-Wide
Association Studies

QTL QTL QTL

Lower N, ~ lower allelic range Higher Ne ~ higher allelic range

Higher LD = lower resolution Lower LD = higher resolution

Application to breeding Application to discovery of
gene function / functional
genomics

Markers needed = 10-20/cM Markers needed = 1M+
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Genomic Selection in Conifers

e "Comparing CLonal Lines on
Experimental Sites = CCLONES"

e 900 replicated loblolly pine clones
developed from 62 elite full-sib
families

e Ne=40

e Four field locations

e ~3 SNP markers/cM

— mﬂ;v

Marcio Resende Jr. Patricio Munoz
de Almeida Filho et al. Heredity. 2016 Jul;117(1):33-41.
Mufoz PR et al. Genetics. 2014 Dec;198(4):1759-68.
Resende MF Jr et al. Genetics. 2012 Apr;190(4):1503-10.
Resende MF Jr et al. New Phytol. 2012 Feb;193(3):617-24.




Genomic Selection Accuracies in CCLONES

DBH & Height

Phenotypic
selection

Accuracy
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I

Expectation from
empirical calculation:
N ~1,000

QTL ~50-100
h2~0.2-0.4



Genomic Selection Accuracies in CCLONES

Other trait accuracies
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Genomic Selection Accuracies in CCLONES

Trait category Trait Seethocs
RR-BLUP BLASSO Bayes A Bayes Cnt
Height 0.39 0.38 0.38 0.38
Growth )
Diameter 0.46 0.46 0.46 0.46
Crown width 0.48 0.46 0.47 0.47
Branch diameter 0.27 0.25 0.27 0.27
Development
Branch angle 0.51 0.51 0.51 0.51
Root number 0.24 0.26 0.25 0.24
Disease Rust 0.29 0.28 0.34 0.34
resistance Rust volume 0.23 0.24 0.28 0.29
Stiffness 0.43 0.39 0.42 0.42
Lignin 0.17 0.17 0.17 0.17
Late Wood 0.24 0.24 0.23 0.24
Density 0.20 0.22 0.23 0.22
C5C6 0.26 0.25 0.25 0.25

Resende et al. Genetics 190:1503-10.



Genomic Selection Accuracies in CCLONES

[
Diameter Rust volume
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Methods
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0.29 0.28 0.34 0.34 0.33
0.23 0.24 0.28 0.29 0.37

Resende et al. Genetics 190:1503-10.



Genomic Selection Accuracies in CCLONES

How stable are prediction models across years?
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Genomic Selection Accuracies in CCLONES

How stable are prediction models across sites?

DBH Nassau | Palatka | BFGrant | Cuttberth
Nassau 0.71
Palatka 0.70
BFGrant
Cuttberth
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Genomic Selection Accuracies in CCLONES

How stable are prediction models across sites?

DBH Nassau | Palatka | BFGrant | Cuttberth
Nassau
Palatka 0.11
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Genetic Gain Relative to Phenotypic Selection

e Increase in genetic gain using genomic selection relative to
phenotypic selection.

Increase relative

Efficiency to phenotypic
selection (%)

0.79 0.75 1.90 90
0.75 0.73 1.95 95
0.85 0.65 1.53 53
0.81 0.67 1.65 65
0.74 0.77 2.08 108
0.68 0.74 2.18 118
0.80 0.64 1.60 60

0.85 0.67 1.58 58




Will this work (next generation) in forestry?

Of course, it worked with...
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Unfortunately, breeding trees is not the same as
breeding chicken...



What are the threats to the application of
genomics/genome-wide selection in forestry?

- Genotype by environment interaction

Prediction models apply to narrow regions
- Low multiplier

Many suppliers, horizontal market
 High cost of genotyping

Scale and affordability

« Low heritabilities

Better training populations needed

- Slow breeding
Slow translation of science to application
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Genotype by environment interaction

DBH Nassau | Palatka | BFGrant | Cuttberth
Nassau 0.71 0.44
Palatka | 0.48 0.70
BFGrant
Cuttberth




Genotype by environment interaction

DBH Nassau | Palatka | BFGrant | Cuttberth
Nassau
Palatka 0.11
BFGrant
Cuttberth

550 Km




qu’ii" et
*‘P‘ s f} :

I-.“.\'

doi:10.2527/af.2016-0042



What are the threats to the application of
genomics/genome-wide selection in forestry?

- Low multiplier
Many suppliers, horizontal market



doi:10.2527/af.2016-0042

* 35 - 40 Purelines

« 400 thousand
« Yr. 0

+ 500 thousand
* ¥Yr. 1

+ 12 million
e Yr.2

» 300 million
e Yr.3

» 400 billion
* Yr. 4




What are the threats to the application of
genomics/genome-wide selection in forestry?

 High cost of genotyping
Scale and affordability



High cost of genotyping — imputation or other solutions

Genotyped | ___A__G__C__ TCTATTGTTCAZ
haplotypes | ___T__T__T._ >  &CCTCCTCCTCC
TCTATTGTTCAA /
TCTATIGTICAC ... and fill in
CCCTCCTCCTCC corresponding
Matchto { CCCTCCTCCTCC values
reference TCOCTCCTCCTCC
haplotypes | TCCATTTTTCAA - Scenario |
TCCATTTTTCAC =
L e | L R P °
=2
£
B — T , _
S Scope of prediction
--@-  Across families
g |- Within a family
HD LD LD LD LD
20K 500 200 100 50

No. of markers

Fig. 2. Prediction accuracy across families and within a family
against the number of markers used in the prediction set with
200 individuals; 2000 training individuals had the true high-
density genotypes (HD); LD, low-density genotypes imputed
to high density; letters denote significant difference within the
scope of prediction at p < 0.01 according to the Tukey's multiple
comparison test.

Crop science, vol. 57, 2017



What are the threats to the application of
genomics/genome-wide selection in forestry?

- Low heritabilities
Better training populations needed

- Slow breeding
Slow translation of science to application



Are these factors really limiting?

USDA United States National Institute

Cooperive S o e
Genetics Funded by the joint USDA/DOE Plant
Research Genomics for Bioenergy program (2013-
Program 67009-21200)

Current

. I :
Species Cycle Populations Status

Main - 300 31 cycle test
‘ B 3 Elite— 60 olanted 2011-12
Wild selections )
Longleaf 1 1000 Not active

2" cycle test

» Loblolly 2 Main - 150 olanted 2012-13

Wild selections )
Sand 1 143 Not active

Hybrids 1 60— F1 Non active
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Summary

Historical data in other systems suggests that GWS is applicable
to forestry

Preliminary data in conifers and other tree species support that
expectation

However, the uniqueness of tree breeding will impose limitations
that may slow the application of GWS

Which scenario will we find?

A

Adoption

Time
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