# **DNA MARKERS TO IDENTIFY SOUTHERN PINES AND THEIR HYBRIDS**

Craig Echt<sup>1</sup>, Sedley Josserand<sup>1</sup>, Barbara Crane<sup>2</sup>, Valerie Hipkins<sup>3</sup>, Chuck Burdine<sup>1</sup>, C Dana Nelson<sup>1</sup>, and James Barnett<sup>4</sup>

<sup>1</sup>USDA Forest Service, Saucier, MS, USA <sup>3</sup>USDA Forest Service, Placerville, CA, USA <sup>2</sup>USDA Forest Service, Atlanta, GA, USA <sup>4</sup>USDA Forest Service, Pineville, LA, USA

### Why do it?

Pine hybrids are a concern for National Forest System (NFS) seed orchards that provide seed for reforestation on NFS lands in the Southern Region. The Forest Service has an obligation to make sure that its seed supply is genetically pure. Hybridization of longleaf and shortleaf pines with loblolly pine is of special concern for restoration initiatives. Mature hybrids and hybrid seedlings or seeds are not always possible to visually identify, but the right DNA markers can genetically identify hybrid material.

## Hybrid analyses based on chloroplast haplotypes

|                     |              | #        | #      | %      |                                                             |
|---------------------|--------------|----------|--------|--------|-------------------------------------------------------------|
|                     | source       | tested I | nybrid | hybrid | notes                                                       |
| EXPCETED HYBRID     |              |          |        |        |                                                             |
| longleaf x loblolly | nursery      | 20       | 20     | 100%   | Sondereggers visually selected from longleaf seedling trays |
| longleaf x loblolly | Kisatchee NF | 28       | 21     | 75%    | Sondereggers visually selected from a longleaf plantation   |
| NFSO SEED LOT       |              |          |        |        |                                                             |
| longleaf            | MS 2014      | 82       | 1      | 1.2%   | Mississippi Forestry Commission seed orchard                |
| shortleaf           | range-wide   |          |        |        | In progress                                                 |
| loblolly            | range-wide   | 280      | 9      | 3%     | Most "hybrids" from one lot, may be seed contamination      |
| NFSO CLONES         |              |          |        |        |                                                             |
| longleaf            | range-wide   | 541      | 0      | 0%     | Ramet count for 259 families, plus 28 from MFC orchard      |
| shortleaf           | range-wide   | 1144     | 29     | 2.5%   | Ramet count for 677 families                                |

#### What was done?

By comparing pine chloroplast DNA (cpDNA) sequences from a public database, we designed DNA markers to provide species-specific DNA fingerprints (haplotypes) for longleaf, shortleaf and loblolly pines. cpDNA is paternally inherited, so these markers can identify the species of the pollen parent of an inter-species cross. We developed two variable cpDNA markers and one to serve as a PCR positive control. Together these provide diagnostic cpDNA haplotypes for longleaf, shortleaf, and loblolly pines. Slash, pitch, and Virginia pines were also tested.

To identify hybrid trees, the NFS Genetics program, with the National Forest Genetics Laboratory (NFGEL), haplotyped two ramets from each longleaf and shortleaf clonal family in every NFS Region 8 seed orchard. This included shortleaf 2<sup>nd</sup> generation material and scions for establishment of new 2<sup>nd</sup> generation seed orchards. **Other pines tested: Pitch pine** and shortleaf pine share their three haplotypes, but at very different frequencies, which may indicate reciprocal hybrids instead of shared haplotypes; **slash pine** shares its three haplotypes with loblolly pine, but only rarely, and these exceptions may be hybrids or seed contaminants. **Virginia pine** has an unusual haplotype (below).

#### PCR primer information for pine chloroplast markers

| Marker name | Lab primer<br>name | Primer sequence, 5' – 3'  | Primer<br>length, bp | RefSeq<br>product len,<br>bp | RefSeq<br>Start pos | RefSeq<br>Stop pos | T <sub>m</sub> , C |
|-------------|--------------------|---------------------------|----------------------|------------------------------|---------------------|--------------------|--------------------|
| trnL-sifg1  | PpaCPnul_B3.f      | CTTGAATCTGGCATCTATCTTACTT | 25                   | 260                          | 69050               | 69074              | 56.7               |
|             | PpaCPnul_B3.r      | TGAATGGGTAATCCTGAGCCA     | 21                   |                              | 69309               | 69289              | 58.8               |
| trnK-sifg1  | PpaCP_D5.f         | TGGATGATCTGCTCCTTCAGTATC  | 24                   | 240                          | 1627                | 1650               | 59.7               |
|             | PpaCP_D5.r         | ATCCCCTAGCTAATTCCTGGC     | 21                   |                              | 1866                | 1846               | 59.0               |
| ycf1-sifg1  | PecCPnul_B1.f      | AAAAGATGGTCAAGATCAAAAGG   | 23                   | 215                          | 100627              | 100649             | 55.4               |
|             | PecCPnul_B1.r      | CTTCACTATCACCATCGTCTTG    | 22                   |                              | 100841              | 100820             | 56.6               |

Nucleotide positions of start and stop sites are for the complete loblolly chloroplast reference sequence, RefSeq NC\_021440.1 from NCBI GenBank. Marker trnL-sifg1 is a single-sized fragment seen only in loblolly pine. Its positive control marker, trnK-sifg1, is a single-sized fragment found in all species tested. Marker ycf1-sifg1 provides a single fragment that is variable in size among individuals with alleles largely specific to species. In Virginia pine (*Pinus* Subsection: Contortae), ycf1-sifg1 amplifies a complex pattern of fragments, indicating a very different *ycf1* sequence structure from the southern pines (Subsection: Australes).

In the NFS seed orchards, we find that 2.5% of shortleaf clones, and no longleaf clones, are loblolly hybrids. A sample of a 2014 longleaf seed lot from Mississippi shows no excessive hybridization.

#### What's next?

- NF seed orchard managers will remove verified hybrid trees from all orchards
- Continue screening seed lots for hybrids and seed contaminates
- DNA fingerprint all families and verify ramet identity



 Cross check haplotyping results with published shortleaf hybrid analyses

Nursery personnel cull any suspicious looking seedlings at the grading table, but visual grading doesn't always catch all the potential hybrids. Diagnostic DNA markers let us measure the hybrid frequency in seed lots before planting to ensure acceptable standards of genetic purity.