Modeling interactions of crops and diseases: a modelling framework

Marcello Donatelli¹, Simone Bregaglio²

¹ Council for Agricultural Research and Economics, CRA-CIN, Bologna, Italy
² University of Milan, Cassandra Lab., Milan, Italy
Introduction: constraints

- The simulation of crop performance under climate change scenarios includes, as one of the assumptions, the likely lack of adaptation of crops to the new environmental conditions.

- Climate impacting on crops is no longer “known variability”, but it might include extremes and new patterns of temperatures and rainfall, which increase the risk of relying on observations to estimate future trends of crop responses.

- Process-based crop models need to be verified in terms of assumptions accepted in the formalization of processes, often implemented as simplifications of responses.

- Plant diseases models are no different; moreover, site and weather-specific interactions with crops may substantially change under new scenarios.
Introduction: approaches

- Simplifying the impact of diseases on crop performance in unknown weather conditions should not be done as reduction on yield *ex-post* because:

 - There is no knowledge of what the impact (of what disease?) could be under “unknown” patterns of weather variables;

 - Ex-post corrections introduce an error in estimating use of resources during growth, which would impact substantially on yield in conditions, for example, of water scarcity;

 - The development of agro-management plans, direct to control diseases, and indirect to supply crop inputs, are affected, making the development of adaptation techniques biased.

- The level of empiricism in building modelling solutions is a limiting factor for future, unknown conditions: there is no data to build and corroborate the empiricism.
Level of empiricism and prediction

redrawn from Acock and Acock, 1991
Aim of the framework

- To develop capabilities of simulating diseases and their interaction with crops under climate change scenarios:
 - The framework had to be based on process-based simulation, less risky under unknown conditions once system analysis evaluates modelling approaches in the target context;
 - It had to be extensible to allow for alternate and new approaches to simulate diseases and crop-disease interactions;
 - The simulation of agro-management had to be included to allow developing plans for technical adaptation;
 - The system had to be open, to allow plant pathology modelers to extend and using the framework for specific cases, hence contributing via a building block approach.
Outline

- The Diseases framework modules
- The software implementation
- Applications
- Conclusions
The **Diseases** components are four software extensible libraries implementing models to simulate the time evolution of a generic air-borne fungal disease epidemic:

- **InoculumPressure**, to estimate the time of the disease onset and to provide models to derive initial disease severity.
- **DiseaseProgress**, to simulate the disease progress rate of a monocyclic/polycyclic fungal disease as a function of the agro-meteorological conditions and of the plant-pathogen interactions.
- **ImpactsOnPlants**, to simulate the impact of a diseases epidemic on plant processes and organs via the coupling to crop models.
- **AgroManagementDiseases**, to simulate the reduction of the disease progress rate as a function of a chemical application, and the decay of the effectiveness of the active principle.
The whole picture: model libraries

Weather libraries
AirTemperature, EvapoTranspiration, LeafWetness,
SolarRadiation, Rainfall, Wind
Climatic indices
Weather Generators (ClimGen, CLIMAK)

Abiotic stresses
Heat damage, Rice cold shocks, Lodging

Biotic stresses
Generic air-borne diseases simulator (Diseases, Magarey),
Generic soil-borne diseases growth (SBD),
CornBorer simulator (MYMICS)

Plant libraries
Generic crop simulators (Wofost, CropSyst, STICS)
Generic tree simulator (Tree)
Rice (WARM)
Sugarcane (CaneGro)
Grain quality (AgPro-Q)

Soil libraries
Soil water runoff and erosion (CN, Eurosem),
Soil water redistribution (Cascading, Finite Differences)
Soil surface and profile temperature,
Soil nitrogen (SoilN)
Pedotransfer functions (SoilPAR)

Agricultural management
Rule-based modelling (AgroManagement)
The InoculumPressure module

- The module allows estimating the time of the disease onset and to provide models to derive initial disease severity.

- The module implements models to simulate:
 - the time of disease onset based on hydro-thermal time (Rossi et al., 2008);
 - the infection and sporulation efficiencies of primary inoculum (Magarey et al., 2005; Launay et al., 2014)
 - spores dispersal as driven by wind speed or precipitation. (Waggoner and Horsfall, 1969; Aylor, 1982)

- Models can be added to simulate inoculum survival during fallow periods (as well as alternate options to estimate initial disease severity).
Timing of the disease onset

- Hydro-thermal time is accumulated hourly considering threshold temperatures for inoculum development and a threshold of hourly air relative humidity limiting accumulation.
Wind and rain spores dispersal

- These functions can be parameterized by setting few parameters with a clear biophysical meaning.
- Parameters can be found in literature or measured in dedicated experiments.
The *InoculumPressure* module

To the *DiseaseProgress* module

Crop libraries
The *DiseaseProgress* module

- The approach used for impact simulations on the host tissue is based on the development of Susceptible-Exposed-Infected-Removed (SEIR) models.

- The plant host tissue which can become infected is consequently classified into non-overlapping categories such as *healthy, latently infected, visible but not sporulating, infectious* and *sporulating and removed* (Jeger, 2000).

- The parameters in SEIR models usually drive functions of exogenous variables such as air temperature, leaf wetness, wind speed, rain and air relative humidity (Ferrandino, 1993).

- The level of host resistance and the variable susceptibility of host tissue during the crop growth are important factors to be considered in modelling (Shtienberg, 2000), since they affect the rate of disease development during the cropping season.
The DiseaseProgress module

- The host tissue is divided into compartments according to disease development:

 - Healthy
 - Latent
 - Visible
 - Infectious
 - Removed

 Latency

 Incubation

 Cultivar resistance

 Temperature
 Relative humidity
 Cultivar resistance
 Rainfall
 Wind speed

 Infection
 Sporulation
 Dispersal & catch

 f(t) function

 - T_{min}
 - T_{opt}
 - T_{max}

 Secondary cycles
The temperature response function is parameterized according to the thermal requirements of different pathogens.

The model considers the minimum and the optimal duration of the wetness period.

The number of hours needed to complete an infection event (Magarey et al. 2005) is used to derive daily infection efficiency.
- Sporulation efficiency is computed basing on temperature and vapour pressure deficit or relative humidity (as a threshold)
- The same temperature response function as for infection can be parameterized for the sporulation process.
The *DiseaseProgress* module

- The duration of the latency, incubation and infectiousness periods is simulated as dependent by hourly temperature.
- Parameters needed are cardinal temperatures for the periods and duration (days) of the period at optimal temperatures.

![Incubation - Latency](image1)

![Infectiousness](image2)

Incubation - Latency

- Minimum duration
- Maximum duration

Infectiousness

- Maximum duration
The *DiseasesProgres* module

From *InoculumPressure*

To *ImpactOnPlants* and *Agromanag*
Models were parameterized to reproduce two pathosystems

- Two crop models, WARM and WOFOST
- Outputs of sample simulations to show model responses
The assessment of crop yield losses is indicated as the reason of existence of plant pathology (Fargette et al., 1988; Savary and Cooke, 2006).

The reproduction of the damage of the disease on crop organs by linking the outputs of disease models to crop simulators (Pinnschmidt et al., 1995) allows a more realistic simulation of the crop-pathogen interactions (Johnson and Teng, 1990) than reducing directly states of either yield or biomass.

The impacts of the disease on plant physiological processes (Boote et al., 1983) is taken into account via coupling points linking disease estimated rates to plant either states or rates.
The mechanisms of damage caused by fungal foliar pathogens can be grouped into two broad categories: the impacts on radiation interception and the impacts on the photosynthetic activity (Johnson, 1987).

The reduction of the photosynthetic rate as a function of disease severity can be described using the concept of “virtual lesion”, (Bastiaans 1991), which corresponds to the visible lesion and surrounding symptomless tissue, plus any non-colonized region in which photosynthetic metabolism is affected.

Another coupling point between crop models and disease models was developed to take into account the enhancement of the maintenance respiration as a function of the disease severity (Bingham and Topp, 2009).
The *ImpactOnPlants* module

- Responses of the models to simulate the decrease of radiation use efficiency and/or the leaf CO2 assimilation as a function of disease severity and virtual-visual lesion ratio (β).

- Responses of the models to simulate the enhancement of maintenance respiration as a function of disease severity and of the ratio between the respiration rate of a lesion and that of an identical area of healthy leaf tissue (α).
The ImpactOnPlants module

From the DiseaseProgress module
- Leaf area index is dynamically reduced according to disease severity increase
- Impact on aboveground and yield.

Blast on rice
(crop model WARM)

Brown rust on winter wheat
(crop model WOFOST)
The effects of chemicals on foliar diseases development can be grouped into two main categories (Milne et al., 2007):

- **Protectant fungicides**, which inhibit spore germination thus reducing the infection frequency (Manners, 1993; Russell 2005)
- **Eradicant fungicides**, which slow down the growth of mycelium and consequently the sporulation rate (Vyas, 1984; Bailey, 2000).

Agro-management is currently implemented, like in all agro-management implementations in the BioMA platform, as:

- Rules, to trigger agro-management events, based on the state of the system;
- Model to estimate degradation of chemicals;
- Impact models, which affect the states of the pathogen.

Both rules and impact models are extensible.
The **AgromanagDisease** module

To the module **DiseaseProgress**
The degradation of the fungicide after chemical treatment is simulated as a function of

- temperature (Patterson and Nokes, 2000)
- rainfall (Arneson et al., 1978; two models)

Temperature degradation

Rainfall degradation
Disease severity is reduced after chemical treatment

The effectiveness of the chemical treatment is reduced after application
Outline

- The Diseases framework modules
- The software implementation
- Applications
- Conclusions
The software implementation is based on four modules, each composed of two discrete units.

Each module is implemented separating the description of the domain from the models; the library of models can be independently either extended or fully replaced, and also the library including the description of the domain can be extended.

Models are implemented at fine granularity, referring to the description of the domain for inputs and outputs, whereas each model includes the definition of its own parameters.

Models are meant to be composed, also to models from other components as crop libraries, to build modelling solutions which are also reusable in other platforms which are compatible at binary level (the platform is based on Microsoft .NET)
From knowledge to software units

Criteria to define the granularity

- Is the process specific for one pathosystem?
 - YES
 - Is the process driven by a single inputs set?
 - YES
 - Which are the inputs sets?
 - SET 1
 - Modelling approach 1
 - e.g., InfectionWD
 - SET 2
 - Modelling approach 2
 - e.g., InfectionRH
 - SET n
 - Modelling approach n
 - NO
 - Pathosystem generic
 - e.g., Latency

Aggregation levels

- Simple strategies
 - Pathosystem specific
 - e.g., InoculumStartBlast

- Context strategies
 - Pathosystem generic
 - e.g., DiseaseDevelopmentC

- Composite strategies
 - Pathosystem specific
 - e.g., InoculumBlastC

...
The percentage of host tissue which can be affected by new infections (HT_{val}, %) is computed on a daily basis as a function of the total host tissue affected by the epidemic and of the ratio between green and total leaf area index as:

$$HT_{val} = \begin{cases} \frac{GLAI}{LAI} & \left(\frac{HT_{lat} + HT_{vis} + HT_{inf_{max}} + HT_{sen}}{HT_{max}}\right) \\ 0 & \text{if } \left(\frac{HT_{lat} + HT_{vis} + HT_{inf_{max}} + HT_{sen}}{HT_{max}}\right) < \frac{GLAI}{LAI} \end{cases}$$

elsewhere

Where $GLAI$ is the green leaf area index ($m^2 \cdot m^{-2}$), LAI is total leaf area index ($m^2 \cdot m^{-2}$), HT_{max} is the maximum host tissue which can be affected by the disease (i.e., maximum disease severity, 0-1), HT_{lat} is the latent host tissue (0-1), HT_{vis} is the visible host tissue (0-1), HT_{spor} is the infectious host tissue (0-1) and HT_{sen} is the senescent host tissue (0-1).

HT_{val} starts to decrease starting from the day of the disease onset.

When the percentage of HT_{val} is > 0, the new percentage of host tissue which can become infected ($HT_{inf_{pot}}$, 0-1)

where Sp_{eff} is the daily sporulation efficiency (0-1), C_{rain} and C_{wind} are the efficiency of spore catch by rain or wind. Inf_{spores} is the efficiency of the production of airborne spores by the infectious tissue are computed as:

$$Inf_{spores} = HT_{spor} \cdot Sp_{eff} \cdot \max(D_{rain}, D_{wind})$$
Outline

- The Diseases framework modules
- The software implementation
- Applications
- Conclusions
A sensitivity analysis was run on rice for China (model WARM + Disease simulating rice blast), and on wheat for Europe (model WOFOST + Disease simulating brown rust).

The library SimLab was used for the purpose. A first screening was run using the Morris' method to identify the most sensitive parameters, then the Sobols' method was run on those parameters to refine the analysis.

The maps show the most important parameter influencing the variability of disease severity at maturity for each grid cell.
- The model outputs were compared to visual assessments of disease severity.

- Two Italian rice varieties medium and low resistance to blast disease.

- Earlier disease onset in 2014 according to measures.

- Lower impact of the disease in 2013 cropping season in Collobiano than in the other site × year combinations.
Application: rice blast

- Experimental field trials (paddy rice) carried out since 1996.
- Three sites in Northern Italy, around 40 rice varieties with different blast resistance levels.
- Visual assessments of the disease impact (i.e. leaf and panicle blast) on rice crop, ranked in a scale ranging from 0 (< 5 %) to 5 (> 60 %).
The modelling solution (WARM+Diseases) obtained similar performances for the calibration and evaluation datasets.

Effective in reproducing the marked year-to-year fluctuations in the three sites.

Application: rice blast
The framework proposed and the associated software infrastructure allows for a building-block process in which alternate and new models can be added to either extend or improve the simulation of diseases, and the impact on crops.

Plant pathology modellers can use known crops models to develop specific cases, and hopefully crop modellers will be able to rely on a library of models for diseases simulation developed and tuned by specialists.

The cooperation between plant pathology modellers and crop modellers is key to further develop and evaluate modelling capabilities, including the implementation of pathosystems of different diseases impacting simultaneously on crops.
Conclusions (2)

- The software architecture of this framework is not merely an application of technology, in fact, it directly impacts on knowledge sharing and building.

- As for other applications of the software architecture used, this framework does not present “the model”; instead it provides a way to build, compare, and use operationally modelling options.
The software development kit

http://goo.gl/mkatY9