Pepper production in North America

- **1.8M tons** of bell peppers produced in Mexico in 2007 (FAOSTAT, 2009).

- **40K acres** of field bell peppers cultivated in the United States in 2015 (USDA, 2015).

- **150K tons (1.3K acres)** of bell peppers grown in *greenhouses* and **66K tons (5.9K acres)** in field in Canada in 2016. (StatsCan, 2017).
 - In wintertime, demand for peppers in Canada outstrips supply and must be imported from elsewhere.
Pepper weevil in Ontario

- At the end of summer in 2015 pepper fields in Southern Ontario experienced weevil infestation.

- A mild fall/winter in 2015/16 meant a new high for weevil presence, leading to significant crop losses in 2016.

- That year, pepper weevil was reported both in Essex and Chatham-Kent counties.

Image credit: Dr. Rodriguez-Leyva
Pheromone trap with two lures
Average weekly number of pepper weevils/trap in Southern Ontario

of adult pepper weevils/trap

- 2016
- 2017

Date surveyed:
- 19-Jul
- 26-Jul
- 2-Aug
- 9-Aug
- 16-Aug
- 23-Aug
- 30-Aug
- 6-Sep
- 13-Sep
- 20-Sep
- 27-Sep
- 4-Oct
- 11-Oct
- 18-Oct
- 25-Oct
Key management strategies now applied

- **Screens** installed on most pepper greenhouses
- **Proper disposal** of pepper biomass
- **Packing** of imported peppers isolated from growing facilities
- **High temperature treatment** for clean-up (>20° C for 2 wks)
- **Intensive crop scouting** (2 scouts/acre/wk; bounties)
- **Registration of new products** and development of BMPs.
However, controlling immature pepper weevils remains a challenge.

Can we better target these life stages?

Biological Control of Agricultural Pests A-1526:

- Assess **distribution** of the pepper weevil and identify its associated natural enemies.
- **Establish a rearing colony** of *A. eugenii* and candidate biocontrol agents.
- **Evaluate efficacy of agents** and report on potential for biological control.
Field and greenhouse survey for pepper weevil and its natural enemies

Aborted peppers collected weekly and monitored in controlled environment chambers for up to 6 weeks.
When do parasitoids emerge?

Weevil and parasitoid emergence from 20 batches collected on varying dates.
Percent parasitism at each location surveyed

<table>
<thead>
<tr>
<th>Site</th>
<th>Pepper type</th>
<th># peppers</th>
<th># weevils</th>
<th># Parasitoids</th>
<th>Parasitism rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingsville 1</td>
<td>jalapeno, chili</td>
<td>222</td>
<td>204</td>
<td>1</td>
<td>0.49</td>
</tr>
<tr>
<td>Kingsville 2</td>
<td>scotch bonnet, jalapeno</td>
<td>247</td>
<td>93</td>
<td>3</td>
<td>3.23</td>
</tr>
<tr>
<td>Kingsville 3</td>
<td>hot cherry, banana, jalapeno</td>
<td>311</td>
<td>652</td>
<td>2</td>
<td>0.31</td>
</tr>
<tr>
<td>Leamington 1</td>
<td>bell</td>
<td>28</td>
<td>11</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Leamington 2</td>
<td>mini sweet</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Leamington 3</td>
<td>bell</td>
<td>200</td>
<td>55</td>
<td>6</td>
<td>10.91</td>
</tr>
<tr>
<td>Dresden</td>
<td>banana</td>
<td>154</td>
<td>158</td>
<td>2</td>
<td>1.27</td>
</tr>
<tr>
<td>Wallaceburg</td>
<td>hot cherry</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Cottam</td>
<td>hot cherry, mini sweet, bell, jalapeno, chili</td>
<td>642</td>
<td>710</td>
<td>45</td>
<td>6.34</td>
</tr>
<tr>
<td>Chatham</td>
<td>jalapeno</td>
<td>51</td>
<td>97</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total number</td>
<td></td>
<td>1920</td>
<td>1985</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>
What parasitoid species are associated to the pepper weevil in Ontario?

- **3 Bracon spp. (16)**
- **3 Nealiolus spp. (10)**
- **Pteromalus anthonomi (10)**
- **Eupelmus pulchriceps (10)**

N. curculionis is a parasitoid of the sunflower stem weevil, *Cylindrocopturus adspersus*, a pest of sunflower in the Great Plains, USA (Rogers and Serda, 1982; Charlet et al., 2002).

Other *Heliconinae* known to parasitize the pepper weevil include *Aliolus spp.* in the USA and Mexico (Mariscal et al., 1998; Rodriguez-Leyva et al., 2007).

B. mellitor considered the most important parasitoid of boll weevil, *Anthonomus grandis* in SE USA and likely also Mexico (Pierce 1908a; and Hunter and Hinds 1905).

Reared previously from beetles including the tobacco beetle, *Lasioderma serricorne* (Anobiidae) and four species of *Anthonomus*, including *A. grandis, A. musculus, A. nigrinus and A. signatus*, (Peck, 1963; Burks, 1979)

Native to and distributed across North and South America (Noyes, 2010; Gibson 2011).

Primary or hyperparasitoid of at least 34 insect species typically developing within fruit, galls, cocoons or plant tissue (Gibson, 2011, Gibson, 1997).
Jaliscoa (Catolaccus) hunteri

- Most widely distributed parasitoid of the pepper weevil in Mexico; Also present throughout the USA.

- Parasitizes the 3rd instar larvae: adult female responsiveness is correlated with this life stage.

6 individuals collected

Photo credit: C. Fernandez AAFC
Distribution of *Jaliscoa hunteri*

- Generalist ectoparasitoid
 - Known to attack the cotton boll weevil, *Anthonomous grandis*
 - Intrinsic rate of increase (0.18) greater than that of the pepper weevil (0.14)

What species are absent in Canada? *Triaspis eugenii* (Braconidae)

- Most abundant parasitoid in Nayarit Mexico. Rodríguez-Leyva 2006
- Egg parasitoid
- Has greater reproductive potential (rm = 0.26) than does the pepper weevil (rm = 0.14). Seal et al. 2002, Rodríguez-Leyva 2006
Can *Jaliscoa hunteri* reduce pepper weevil infestation?

Suppression of *Anthonomus eugenii* (Coleoptera: Curculionidae) pepper fruit infestation with releases of *Catolaccus hunteri* (Hymenoptera: Pteromalidae)

DAVID J. SCHUSTER

Number of adult pepper weevil /200 pepper plants in response to releasing different number of *J. hunteri*/0.2 ha
Commercial greenhouse *J. hunteri* trial

Design:
- 30,000 adult *J. hunteri wasps* released in a 3 acre block (2.47 wasps/m²) vs. untreated 6 acre control.
- Three weekly releases of the parasitoid *J. hunteri*:
 - Oct 20, 27 and Nov 3rd.
- Collection and monitoring emergence from 200 infested peppers per range per week.

Results:
48% change in pepper weevil infestation levels observed between treatment and control.
- But only a few adult parasitoids emerged.
More questions to answer

• How is *J. hunteri* affecting weevil emergence?
 – Does host feeding occur often?
 – Behavioral studies led by PhD candidate, Catalina Fernandez

• Why is overall recovery of pepper weevil parasitoids so low?
 – Is host switching an important factor influencing successful parasitism?

• Are there ways to improve parasitism by *J. hunteri*?
 – Optimizing mass rearing of *J. hunteri* on other hosts, Felix Longpre, AAFC, London

• Could other parasitoids identified be developed as possible biocontrol agents against the pepper weevil?
Acknowledgements

Dana Gagnier, AAFC
Renee Hilker, AAFC
Cara McCreary, OMAFRA
Dr. Tara Gariepy, AAFC
Dr. Peter Mason, AAFC
Dr. Jose Fernandez-Triana, AAFC
Dr. Gary Gibson, AAFC
Catalina Fernandez, University of Windsor
Dr. Alfonso Torres Ruiz, Koppert Mexico
Dr. Esteban Rodríguez-Leyva, COLPOS
Dr. Philip Stansly
Pepper growers of Ontario

Project funding:
2117: OGVG Collaborative framework: Management of the pepper weevil
1526: AAFC A-base: Biological control of agricultural pests

For more information, please contact: roselyne.labbe@canada.ca