

GENETIC RESISTANCE TO PEPPER ANTHRACNOSE: LESSONS FROM TOMATO

J.R. Stommel¹, U.K. Reddy², C.L. Ortiz², V.L. Abburi² and P. Nimmakayala² USDA, ARS, Genetic Improvement of Fruits & Vegetables Laboratory¹, Beltsville, MD West Virginia State University, Gus R. Douglas Institute & Dept. Biology², Institute, WV

INTRODUCTION

- Anthracnose caused by *Colletotrichum* species is a serious disease of Solanaceous crops grown in North America., endemic in production regions of the Eastern and Midwestern United States & south-central Canada.
- In pepper, variable modes of inheritance for anthracnose resistance have been reported & variation in *Colletotrichum* pathotypes complicates breeding for durable host resistance. Crossing barriers within *Capsicum* & segregation distortion hinder introgression of useful levels of resistance into *C. annuum*.
- We have selected an unadapted small-fruited tomato line, designated 95L368, that exhibits a high level of resistance to a broad range of *Colletotrichum* species that cause anthracnose on tomato as well as pepper. This resistant genotype is also resistant to *Colletotrichum* isolates responsible for rot of immature pepper.

Table 1. MQM analysis 2000 season

Chr	Locus	LOD	# Iter.	mu_A	mu_H	mu_B	Varianc e	% Expl.	Additive
9	7059180 7	4.77	3	7.00996	8.07661	9.14326	9.15636	6.2	-1.06665
6	4222430 2	4.34	4	7.00726	8.01406	9.02086	9.22583	5.7	-1.0068
6	4209252 4	4.27	3	7.01991	8.01306	9.0062	9.23992	5.6	-0.99315

Table 2. MQM analysis 2017 season

Chr	Locus	LOD	# Iter.	mu_A	mu_H	mu_B	Variance	% Expl.	Additive
6	42224302	14.48	4	5.89085	7.89232	9.89379	9.9203	21.6	-2.00147
6	42001528	14.38	4	6.01315	7.91905	9.82495	9.93261	21.5	-1.9059
6	42092524	14.25	4	5.91252	7.88976	9.86701	9.9614	21.3	-1.97724
6	42012308	14.11	3	5.99529	7.92749	9.85968	9.99284	21.1	-1.93219

Resistance in 95L368 was primarily additive with two to three genetic factors estimated to be segregating for resistance.

Results of association mapping (Manhattan plot) delineating clear signals on chromosomes 6 & 9 for loci associated with anthracnose resistance (2017 field season).

9.80106 20.5 13.68 5.99105 7.89605 49324064 10.0688 -1.905 7.01 6.54711 8.00447 9.46183 11.4315 53457523 11.2 -1.45736 Legend LOD 6.61 6.57276 8.00129 9.42982 11.5199 10.6 67973214 3 -1.42853

Composite interval mapping for 2000 & 2017 field seasons. QTLs with high LOD support were identified on chromosomes 6 & 9.

RESULTS

- Utilizing a recombinant inbred line population developed from a cross with the anthracnose resistant line 95L368, GBS was used to identify & map genomic regions associated with lesion development. 15300 polymorphic SNPs were identified of which 1692 SNPs were mapped, spanning a length of 2519cM.
- Utilizing MAP-QTL & MULTI-QTL, a genetic map was constructed with a marker density of 1.48 SNP per cM. Across years, oci on chromosomes 6 & 9 that were associated with anthracnose resistance were identified. Additional loci on chromosomes 2, 3, 8 & 10 exhibited strong QTL x year interaction, with significance in only one of two years of testing.
- Utilizing an additional 4500 previously unmapped SNPs, association mapping (Golden Helix) confirmed association of loci on chromosomes 6 & 9 with anthracnose resistance.

Chromosome	Position	Gene Name	Reference	Alternates	P-Value	Minor Allele	Maior Allele	Minor Allele D	Major Allele d	Mutation type
emenegene				/	i varac	Minor Ancie	Major Ancie	Frequency	Frequency	
Chr06	42092524	Solyc06g066790.3	G	С	8.13E-15	С	G	0.454183267	0.545816733	Non Synonymous (Lys> Gln)

5.80E-08

Chr09	67973214	Solyc09g075
-------	----------	-------------

0.494023904

0.505976096

Synonymous (Ile ---> Ile)

Gene Name Solyc06g066790.3

Annotation

N-alpha-acetyltransferase 16, NatA auxiliary subunit (AHRD V3.3 *** A0A0B2P106_GLYSO)

Solyc09g075920.1

Serine/threonine-protein kinase (AHRD V3.3 *** K4CVG9_SOLLC);Dbxref=InterPro:IPR024171;Ontology_term=GO:0004674

PCA based on SNP data 2000 & 2017 seasons

