Research Symposium on Nutrient Requirements for Humans and Animals in the Era of Precision Nutrition: UF/IFAS Center for Nutritional Sciences: March 21, 2024

#### Developing Nutrient Requirements for Large Animals: Precision Nutrition and Practical Applications

J. S. Caton Dept of Animal Science and Center for Nutrition and Pregnancy North Dakota State University, Fargo, ND, USA



Center for Nutrition and Pregnancy



### **Importance to Society: Broader Impacts**

- Obesity, Metabolic Disease, Cancer
- Feeding the world population
- Sustainability
  - Biosphere,
  - Hydrosphere,
  - Atmosphere





Produced by: United Nations Department of Public Information

#### **Defining and Delivering the Nutrient Requirements: The Essence of Precision Nutrition**

- Long history of discovery and application
- More in front of us than behind us
- Requirements for nutrients range from percentage of the diet to mg or mcg/kg DMI
  - Most expressed as proportion of diet
  - What about per unit of BW or Metabolic BW

Requirements are fickle and depend upon many things
Where the best of science and the art of management merge





## **Selenium History**

- 1817: Discovered by Berzelius
- 1930's: Se highly toxic to grazing livestock
- 1940's: Implicated as causing cancer in laboratory animals
- □ 1957 to 1980's:
  - Essential nutrient for laboratory animals, food animals, and humans; relationships with Vit. E; narrow range between requirement and toxicity
- **1996-** Anticarcinogenic
- 2008- Involved in diabetes
- 2015- Se and 1-C metabolism

#### ISSBM 13, Oct. 26-29, 2025; Daejeon, South Korea





The 11th International Symposium on Selenium in Biology and Medicine

and

The 5th International Conference on Selenium in the Environment and Human Health

> Stockholm 13 - 17 August 2017

Selenium Metabolism (abbreviated)



#### **Developmental Programming and Epigenetics**

Me Two main components of the "Epigenetic Code" **DNA** methylation **Selenium status** alters 1-C metabolism Histone modifications Influenced by Histones Epigenetic **Modifiers or One** Chromosome Carbon **Metabolites (OCM)** 

Nature 441, 143-145(11 May 2006)

December 2021 · Volume 11, No. 6

July 2017 • Volume 7, No. 3



# ANIMAL FRONTLERS

nimal agriculture



Environment

Farm Animals Important Biomedic Prospects for exploiting epigenetic effects in livestock production

ental programming: lom eats matters!

#### **Epigenetic events**

- Can be caused by perturbed maternal or neonatal nutrition and/or other "events"
- Specific nutrients are required for and "drive" epigenetic events.
- Remember the Human Folic Acid Example!
- Physiological events, like blood flow, can alter nutrient supply to developing offspring and are in fact themselves responsive to maternal nutrient supply.





Interconnection of One-Carbon Metabolism, Energy, Metabolism, Nucleotide Synthesis, and Hydroxy Radical Scavenging.

Crouse et al., 2019 Unpublished

## Defining and Delivering the Nutrient Requirements: Nutrient Supply vs. Demand



## **Establishing Nutrient Requirements; The NASEM Process**

National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Committee on Nutrient Requirements:

- Dairy Cattle 2021
- Beef Cattle 2016
- Swine Pending
- Poultry Pending

NANP-NRSP9 https://animalnutrition.org/



#### https://www.nationalacademies.org/about



https://www.nationalacademies.org/banr/board-on-agriculture-and-natural-resources

#### **The NASEM Report Process**







Conduct a review of the published scientific literature on nutrient <u>requirements</u>.

- Create or update the databases
- Incorporate new information into the revised Nutrient Requirements publication.
  - Modeling the data
  - Balance with animal, producer, economic, environmental and societal needs

Incorporate information from previously published NRC's (Dairy, Small Ruminants, Mineral tolerances of livestock, etc.) where appropriate.

## **Approach = Questions?**

Can we more accurately estimate the nutrient requirements for a given species based on literature published since the most recent Nutrient Requirements publication?

Ground rule – Is there any information that supports

- Changing existing?
- Creating new?







#### **Determining Nutrient Requirements of Ruminants**



## **Defining the Demand (Requirement)**

- Minimum dietary requirements are amounts needed in the diet to prevent the appearance of a deficiency disease or a metabolic syndrome associated with specific nutrient deficiencies and to provide for normal life and production processes.
- It is with this classical view of nutrient requirements in mind that dietary requirements for nutrients have been traditionally established in livestock.



## **Determining Requirements**

#### • Factorial estimates/modeling

• Sum of the components of net requirements for maintenance and production and divide the total by the coefficient of absorption.

#### • Dietary experimentation estimates

- Supplement a diet deficient or suspected of being deficient in a nutrient with one or more concentrations of the nutrient of interest.
- Balance and retention
- Modeling the data
- Animal production objectives
  - Sustainably meeting human demands



## **Dietary supply to meet requirements**

- Production objectives
- Environmental constraints
- Feed/nutrient sources and availabilities
- Intake
- Efficiencies of nutrient use
- Animal considerations
  - Species, breed, production status, health, etc.



### **Precision Nutrition: Practical application**

- Optimal animal growth and production
- Long-term environmental sustainability
- Sustained economic viability
- Increased food security
- Broad societal impacts





Source: United Nations Department of Economic and Social Affairs, Population Division, *World Population Prospects: The 2015 Revision* Produced by: United Nations Department of Public Information



#### **Challenges: Barriers: Needs**

- Robust and comprehensive scientific studies
  - Integrated across disciplines
  - Better define requirements
  - Both discovery and application based outcomes
- Stronger industry partnerships
- Expanded and targeted federal grants programs
  - Nutrient requirements
  - Precision nutrition
  - Broader societal outcomes



#### **Precision Nutrition: Practical Applications**

**Optimal animal growth and production** 

Long-term environmental sustainability

**Sustained economic viability** 

**Increased food security** 

**Broad societal impacts** 









