Precision for Future Nutritional Requirements for Companion Animals

Richard Hill
 MA VetMB PhD DACVIM (medicine, nutrition) MRCVS

Overview

- Precision nutrition in companion animals
- Basis for National Research Council Nutrient requirements of dogs and cats (2006)
- Allometry of nutrient requirements vs size

- Minimal and maximum requirements
- Variation of energy needs with activity
- A canine example
- Future prospects and need

Precision Nutrition in Companion Animals

- Dietary habits/feeding behavior
- Pet owners as well as animal behavior
- Genetics
- Pro-opiomelanocortin gene defect and obesity
- SLC2A9 gene for urate transporter
- Physical activity/energy requirements
- Metanalyses: Birmingham et al Cats BJN 2009 Dogs PLOS 2014
- Obesity and metabolic disease/metabolomics
- Obesity increasing, metabolic disease risk differs
- Microbiome:
- Colon smaller than in people

Energy Terminology

- 1 kcal on pet food label $=1$ Calories on a human label
- 1 Mcal = 1000 kcal: Values are Metabolizable Energy (ME)
- ME in pet foods calculated using 'Modified Atwater Factors' ($3.5 \mathrm{kcal} / \mathrm{g}$ protein or carb; $8.5 \mathrm{kcal} / \mathrm{g} \mathrm{fat)}$) or feeding trial

The Allometry Issue:

- Species and dog breeds vary greatly in size and energy requirements
- Pets fed fixed formula diets so nutrient intake proportional to calories
- Nitrogen excretion proportional to metabolic body size
- Vitamin and trace mineral requirements similar across species relative to metabolic body size and energy requirements
- (Rucker and Steinberg 2002, Rucker and Storms 2002)

Nutrient Requirements

- 'Recommended Allowance' based on 'Minimum Requirement' or 'Adequate Intake' +/- Safe Upper Limit
- Tables for growth, adult, pregnant/lactating dogs + cats
- Essentiol nutrients (not fiber)
- Allometry issue
- Fix animal size
- Assume 4 kcal/g diet
- /kg diet $\Rightarrow / 1000 \mathrm{kcal} \Rightarrow / \mathrm{kgBW}$. 75
- Keep amount/1000 kcal constant

Establishing Recommended Allowance (RA) from

 Minimum Requirement (MR) of an Essential Nutrient

Rusitaint (gonte

Adequate Intake (AI) where less Information

 e.g. Racing greyhounds consuming $140 \mathrm{kcal} / \mathrm{kg}$ BW ${ }^{0.75}$ daily)

Safe Upper Limit (SUL) of a Nutrient (assumes dogs consuming mean of $130 \mathrm{kcal} / \mathrm{kg}$ BW ${ }^{0.75}$ daily) (Growing pups: Morris et al 2012)

NRC (2006) recommendations

ME requirements of exercising dogs
Types of activity
Basal metabolic rate
Resting fed metabolic rate
Maintenance (laboratory dogs)
Racing Greyhounds
Working Collies
Hunting dogs
Sled dogs pulling heavy loads $32 \mathrm{~km} / \mathrm{d}$
Racing sled dogs 168 km/d in extreme cold

Kcal/kg BW 0.75
Mean Range
76 48-114
84 51-127
130 87-173
140 120-160
184 80-380
240 200-280
270 250-290
1050 860-1240

The Activity Issue

- NRC/AAFCO recommendations are based on studies in laboratory animals undertaking more activity than pets ($130 \mathrm{kcal} / \mathrm{kg}^{0.75}$ daily)
- Pets are mostly couch potatoes whereas sled dogs need much more
- Energy requirements can vary up to $15 x$ in dogs, $2 x$ in cats?
- Recommendation: Estimate nutrient requirements for metabolic body weight but maintain nutrient intake as energy intake decreases by increasing nutrient/kcal eg in obese animals

'Lucky' 10 yo Male Dalmatian

- 78 Ibs Normal body condition score (5/9)
- Urate urolithiasis (SLC2A9 defect)
- Recommend low purine diet, alkaline urine
- Chronic kidney disease IRIS stage 2, normotensive
- Creatinine $2.8 \mathrm{~g} / \mathrm{dL}$ (normal <1.2)
- Urine specific gravity 1.011 (isosthenuric), no urine protein
- Recommend low phosphorus, alkaline urine
- Recommend low phosphorus, alkaline urine

Adjusting Nutrient Intake in Pets Requiring Less Caloriesl
MR assumes lab dogs consume mean of 130 kcal.kg BW-0.75 daily
Daily intake kcal.kg BW-0.75 $130 \quad 10065$

Protein ($g /$ Mcal ME) in
 Canine Renal Diets

Manufacturer	Brand name	Dry	Can
Hill's	g/d	47	48
	k/d	33	33
	u/d	23	27
Purina	NF	36	36
	Renal MP	41	46
	Renal LP	35	30

American College of Veterinary Nutrition

 has long recommended an iterative process- Assess (animal and environment)
- Energy Requirement
- Diet history or calculation
- Nutrient composition
- Key nutrients?
- Introduce changes slowly
- Reassess and adjust

Plea for additional minimum reporting nutritional studies involving companion animals

- Animal factors
- Age, sex/neutered?, weight and body condition score
- Environment
- Cage size. Ambient temperature, activity
- Food and ME intake ideally relative to metabolic body weight
- More complete diet analysis
- Ingredient source and recipe

The Copper Issue

- No MR for trace minerals
- Variable absorption
- NRC assumed 30\% Cu absorption
- Concern for copper-associated hepatopathy in dogs
- Cardiomyopathy in cats when copper oxide used
- Many foods contain more than the UL ($20 \mathrm{~g} / \mathrm{kg} \mathrm{DM}$) in person consuming 2000 kcal daily of diet containing $4 \mathrm{kcal} / \mathrm{g}$ DM)

AAFCO PFC Copper in Dog Foods Expert Panel Final Report 2022

Why Consider Companion Animals?

- Advantages
- Will consume standard diet for long periods
- Large number of pets consume similar diets (sentinel for disease)
- Intermediate life-span so rapid resolution
- Out-bred animals in which some diseases are common
- Shorter route to establish genetic basis (Ostrander)
- Limitations:
- Diets poorly described because mostly proprietary
- Food intake usually not reported
- Few prospective RCTs
- Small sample sizes, no population data
- Limited finance for research mostly from pet food companies

Acknowledgements

- Colleagues on NRC committee
- Colin Burrows DVM PhD DACVIM (medicine)
- Mentors at UF FSHN
- Karen Scott PhD

- Tim Garrett PhD and his laboratory technical assistants
- Graduate and veterinary students: Drs Ardente and Ishii
- Many dogs, cats and their owners
- Many funding sources: UF, Royal Canin, Department of Defense
-Questions?

