

Precision Nutrition in Companion Animals

- Dietary habits/feeding behavior
 - Pet owners as well as animal behavior
- Genetics
 - Pro-opiomelanocortin gene defect and obesity
 - SLC2A9 gene for urate transporter
- Physical activity/energy requirements
 - Metanalyses: Birmingham et al Cats BJN 2009 Dogs PLOS 2014
- Obesity and metabolic disease/metabolomics
 - Obesity increasing, metabolic disease risk differs
- Microbiome:
 - Colon smaller than in people

UNIVERSITY of FLORIE

Energy Terminology

- 1 kcal on pet food label = 1 Calories on a human label
- 1 Mcal = 1000 kcal; Values are Metabolizable Energy (ME)
- ME in pet foods calculated using 'Modified Atwater Factors'
- (3.5 kcal/g protein or carb; 8.5 kcal/g fat) or feeding trial

The Allometry Issue:

- Species and dog breeds vary greatly in size and energy requirements
- Pets fed fixed formula diets so nutrient intake proportional to calories
- Nitrogen excretion proportional to metabolic body size
- Vitamin and trace mineral requirements similar across species relative to metabolic body size and energy requirements
- (Rucker and Steinberg 2002, Rucker and Storms 2002)

Vitamin	Mouse	Rat	Chick	Cat	Human	2
Thiamin	2	2	1	2-3	1-2	
Riboflavin	1	1	0.5	1-2	1	
Niacin	8	8	6-8	20-30	5	ka
Pyridoxine	2	2	1-2	2-4	1	
Kcal/d	9/20g	46/300)	200/5k	kg 2000/7	Okg UF College of Veterinary Medicine

Nutrient Requirements

- 'Recommended Allowance' based on 'Minimum Requirement' or 'Adequate Intake' +/- Safe Upper Limit
- Tables for growth, adult, pregnant/lactating dogs + cats
- Essential nutrients (not fiber)
- · Allometry issue
 - Fix animal size
 - Assume 4 kcal/g diet
- /kg diet > /1000 kcal > /kgBW^{0.75}
 - Keep amount/1000 kcal constant

ME requirements of exercising dogs	Kcal/k	g BW ^{0.75}
Types of activity	Mean	Range
Basal metabolic rate	76	48-114
Resting fed metabolic rate	84	51-127
Maintenance (laboratory dogs)	130	87-173
Racing Greyhounds	140	120-160
Working Collies	184	80-380
Hunting dogs	240	200-280
Sled dogs pulling heavy loads 32 km/d	270	250-290
Racing sled dogs 168 km/d in extreme cold	1050	860-1240

The Activity Issue

- NRC/AAFCO recommendations are based on studies in laboratory animals undertaking more activity than pets (130 kcal/kg^{0.75} daily)
- Pets are mostly couch potatoes whereas sled dogs need much more
- Energy requirements can vary up to 15x in dogs, 2x in cats?
- Recommendation: Estimate nutrient requirements for metabolic body weight but maintain nutrient intake as energy intake decreases by increasing nutrient/kcal eg in obese animals

'Lucky' 10 yo Male Dalmatian

- 78 lbs Normal body condition score (5/9)
- Urate urolithiasis (SLC2A9 defect)
 - Recommend low purine diet, alkaline urine
- Chronic kidney disease IRIS stage 2, normotensive
 - Creatinine 2.8 g/dL (normal <1.2)
 - Urine specific gravity 1.011 (isosthenuric), no urine protein
 - Recommend low phosphorus, alkaline urine
- Previous diet: Total ~1442 kcal ≈ 100 kcal/kg BW^{0.75}

	Protein (g/Mcal ME) in Canine Renal Diets					
	Curine Renul (
Manufacturer	Brand name	Dry	Can			
Hill's	g/d	47	48			
	k/d	33	33			
\langle	u/d	23	27	>		
Purina	NF	36	36			
Royal Canin	Renal MP	41	46			
	Renal LP	35	30			

American College of Veterinary Nutrition has long recommended an iterative process

- Assess (animal and environment)
- Energy Requirement
 - Diet history or calculation
- Nutrient composition
 - Key nutrients?
- Introduce changes slowly
- Reassess and adjust

Plea for additional minimum reporting nutritional studies involving companion animals

- Animal factors
 - · Age, sex/neutered?, weight and body condition score
- Environment
 - Cage size. Ambient temperature, activity
- Food and ME intake ideally relative to metabolic body weight
- More complete diet analysis
- Ingredient source and recipe

The Copper Issue

- No MR for trace minerals
- Variable absorption
- NRC assumed 30% Cu absorption
- Concern for copper-associated hepatopathy in dogs
- Cardiomyopathy in cats when copper oxide used
- Many foods contain more than the UL (20 g/kg DM) in person consuming 2000 kcal daily of diet containing 4 kcal/g DM)

AAFCO PFC Copper in Dog Foods Expert Panel Final Report 2022

UF FLORIDA

Why Consider Companion Animals?

Advantages

- Will consume standard diet for long periods
- Large number of pets consume similar diets (sentinel for disease)
- Intermediate life-span so rapid resolution
- Out-bred animals in which some diseases are common
- Shorter route to establish genetic basis (Ostrander)

• Limitations:

- Diets poorly described because mostly proprietary
- Food intake usually not reported
- Few prospective RCTs
- Small sample sizes, no population data
- Limited finance for research mostly from pet food companies

Acknowledgements

- · Colleagues on NRC committee
- · Colin Burrows DVM PhD DACVIM (medicine)
- Mentors at UF FSHN
- Karen Scott PhD
- Tim Garrett PhD and his laboratory technical assistants
- Graduate and veterinary students: Drs Ardente and Ishii
- Many dogs, cats and their owners
- Many funding sources: UF, Royal Canin, Department of Defense
- •Questions?

kg