Recent advancements in restoration-engineering and seed enhancement technologies for use in mine rehabilitation

Dr Todd Erickson
todd.erickson@dbca.wa.gov.au
@TEricksonSeed

...the Pilbara bioregion......

Erickson et al. (2016), *CSIRO Publishing*
Ministerial requirement to restore vegetation that is comparable to the pre-disturbed landscape (= high diversity)

Large deficit of topsoil = seed input

Dealing with a highly altered growing environment
 - Natural dormancy cues now absent?

The majority of the industry still carry out rehabilitation with non-treated seeds and limited knowledge of seed quality and recruitment capabilities

Pilbara Seed Atlas project initiated to improve seed-use capabilities (2008-2013).

...improving restoration at scale through seed-based research......

Biodiversity Restoration Goal
(no. of species reinstated)

Quality assurance (collection phase)

Storage capacity (seed bank phase)

Restoration-ready seed (seed enhancement phase)

Growing medium (seedling establishment phase)

Step changes in technology development required

Current capacity achieves <10% of desired seed use

Barriers to effective seed use
...improving restoration by using the chain-of-seed-use....

Kildisheva et al. (2018), *Plant Biology*, in press
...improving restoration by using the chain-of-seed-use....

Chain-of-seed-use

- Seed collection cleaning & quality
- Seed germination & dormancy
- Seed enhancement technologies
- Seed storage (short- and long-term)

Plant recruitment

- Established seedling
 - Juvenile
- Emerged seedling
 - Germinated seed
- Seed bank
 - Topsoil / Growth Medium

Seed enhancement technologies include:
- polymer seed coating,
- extruded pelleting,
- priming,
- flash flaming, with
- machine modification / development (i.e. GIL eco-engineering project)
...improving restoration by using the chain-of-seed-use....

Chain-of-seed-use

- Seed collection cleaning & quality
- Seed germination & dormancy
- Seed enhancement technologies
- Seed storage (short- and long-term)

Plant recruitment

- Seed bank
- Established seedling
- Emerged seedling
- Germinated seed
- Adult
- Juvenile

Sources

The challenge

- Get tangled, are bulky & difficult to process
- Possess deep physiological seed dormancy
- Polymer seed coats weakened
- Cleaning to seeds difficult

NO SCALABLE TECHNIQUE EXISTS
The innovation: ‘flash flaming’

Technical Article

Flash flaming effectively removes appendages and improves the seed coating potential of grass florets

Andrew L. Guzzoni¹, Todd E. Erickson³, King Y. Ling¹, Kingsley W. Dixon², David J. Merritt²,⁴

Restoration Ecology

Western Australia Innovator of the Year

Global Connections Fund

Australian Government National Innovation & Science Agenda
The innovation enables controlled appendage removal.
The innovation decreases batch volume & increases flowability
The innovation doesn’t impact germination (when delivered correctly)
The innovation improves coatability
The innovation shows promise in Australia
The innovation shows promise in the USA

Winterfat
(Krascheninnikovia lanata)

- Valuable protein rich forage for wildlife and livestock
- Seeds are contained in single-seeded fruits enclosed by four silky bracts
- Bracts prevent the seed from flowing from mechanized seeders
- Difficult to apply seed treatments such as seed coating
The innovation shows promise in the USA

Winterfat (*Krascheninnikovia lanata*)
- volume reduction after flash flaming -
The innovation shows promise in the USA.
So we believe there is commercial, up-scaling potential...

• it is a simple to apply (patented) solution
• contributes to the step changes required in biodiverse restoration
• seeking support for technology as a service and licensing options
 • on-going discussions with US companies
 • keen to evaluate and implement technology
...improving restoration by using the chain-of-seed-use....

Seed collection cleaning & quality

Seed germination & dormancy

Seed enhancement technologies

Seed storage (short- and long-term)

Seed bank

Topsoil / Growth Medium

Plant recruitment

Established seedling

Juvenile

Emerged seedling

Adult

Germinated seed

Merritt and Dixon (2011), Science, Vol 332

Perring et al. (2015), Ecosphere, Vol 6

Erickson et al. (2016), Restoration Ecology, Vol 24

Erickson et al. (2016), Aust. J of Botany, Vol 64

Guzzomi et al. (2016), Restoration Ecology, Vol 24

Erickson et al. (2017), Aust. J of Botany, Vol 65

Kildisheva et al. (2018), Plant Biology, in press

Muñoz-Rojas et al. (2016), Restoration Ecology, Vol 24

Muñoz-Rojas et al. (2016), SOIL, Vol 2

Muñoz-Rojas et al. (2018), Plant and Soil, Vol 429
Triodia pungens = Deeply dormant (<1-year old collection) comparing cleaning, pre-treatments and sowing depth

1. Manage recruitment potential of seeds
2. Develop mechanised options for seed processing and treatments
3. Develop mechanised options for precision seeding in rocky soils

Seeds sown at 5mm
...improving restoration at scale through seed-based research......

Growing medium (restoration engineering)

Step changes in technology development required

Current capacity achieves <10% of desired seed use

Growing medium (seedling establishment phase)
INNOVATIVE STRATEGIES FOR RESTORING FUNCTIONALITY OF RECONSTRUCTED SOILS IN DRYLANDS

Miriam Muñoz-Rojas1,2,3, Todd E. Erickson1,2, Amber Bateman1,2, Tayla Kneller2,3, Shane R. Turner1,2 and David J. Merritt1,2

1University of Western Australia, Crawley, Western Australia, Australia
2Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, Western Australia, Australia
3School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia

Wednesday, 2.40pm, Session 28, Salon A&B

RESTORATION ENGINEERING – A BLENDED SCIENCE-ENGINEERING MODEL

Andrew L. Guzzomi1, Todd E. Erickson2,3, Monte Masarei1, David J. Merritt2,3

1School of Engineering, the University of Western Australia, Crawley, Western Australia, Australia
2School of Biological Sciences, the University of Western Australia, Crawley, Western Australia, Australia
3Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, Western Australia, Australia

Wednesday, 11.20am, Session 24, Salon C