Strategic Placement of Dredged Sediment to Naturally Accrete in Salt Marsh Systems

Jamil S. Ibrahim, PH, PMP, ENV SP
Jeremy Lowe, Amy Richey, Tom Cancienne II, Tasmin Brown, and Craig Conner

"The views expressed in this presentation are those of the authors and does not reflect any official positions by their agencies"
Agenda

1. Background
2. Strategic Placement Methods
3. Ecological Effects
4. Implementation
5. Conclusion and Next Steps
Problems and Opportunities

A change in sediment regime, anticipated sea-level rise, and localized erosion could slow restoration efforts and lead to a long-term loss of mudflats and marshes in San Francisco Bay. Strategic placement techniques may offer one of many possible solutions to the problem of losing mudflats and marshes.
Purpose of Framework

- Review effectiveness and feasibility of the methods for beneficial reuse
- Outline the potential beneficial and adverse effects these methods may have on habitats and biota
- Outline the logistical, regulatory, and equipment needs these approaches would require
- Identify unknowns needing research to reduce uncertainties
Development of Framework

Thank you to:

- Two workshops to elicit ideas of stakeholders in engineering, science, dredging, and regulatory communities
- Discussions with individual stakeholders to ID needs and challenges of methods and proposed pilot study
- Independent Review Panel input/comments on early drafts

... and others
Federal Maintenance Dredging and Disposal Areas
Conceptual Framework for a Method of Strategic Placement of Dredged Sediments
1. MARSH SPRAYING
Dredged sediment is sprayed directly onto the marsh surface, which can increase accretion beyond natural rates.

2. WATER COLUMN SEEDING
Sediment is released into the water column at the marsh channel entrance during an incoming tide to increase suspended sediment concentrations in the water column.

3. SHALLOW WATER PLACEMENT
Sediment is placed offshore to be resuspended by wave and tide action and then transported by tidal currents onto the marshes.
Shallow Water Placement

- Natural processes, rates are limited, timing and volumes less restricted
- Burial impacts, increase in local SSC
- Uncertainty – efficiency of transport pathway
Water Column Seeding

- Increased certainty of placement, less dependent upon wave and tidal energy
- Timing constraints, coupled offloading/accretion
- Uncertainty – timing and volumes of placement
Marsh Spraying

- Certainty of placement and timing; tried and tested
- Increasing infrastructure, unnatural rates of accretion and placement
- Uncertainty – burial impact on marsh, recovery time
How the Methods Compare

<table>
<thead>
<tr>
<th></th>
<th>Shallow Water Placement</th>
<th>Water Column Seeding: Channel Placement</th>
<th>Marsh Spraying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliance on natural transport processes</td>
<td>High</td>
<td>Medium-high</td>
<td>Low</td>
</tr>
<tr>
<td>Reliance on natural accretion processes</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Certainty of sediment reaching target area</td>
<td>Low</td>
<td>Medium-low</td>
<td>High</td>
</tr>
<tr>
<td>Volume that can be accommodated</td>
<td>High</td>
<td>Medium-low</td>
<td>Medium-low</td>
</tr>
<tr>
<td>Certainty that SSC is close to natural</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Certainty that accretion rates are close to natural</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Certainty that accretion results in natural topography</td>
<td>High</td>
<td>Medium-high</td>
<td>Low</td>
</tr>
<tr>
<td>Certainty that process is self-limiting</td>
<td>High</td>
<td>Medium-high</td>
<td>Low</td>
</tr>
</tbody>
</table>

Key:
SSC = suspended sediment concentration
Example Ecological Effects

- Burial of subtidal surfaces
- Soil texture could be altered
- Direct mortality of plants and animals is possible
- Food web effects possible
- Duration: months
How the Methods Compare: Ecological Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Shallow Water Placement</th>
<th>Water Column Seeding</th>
<th>Spraying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication of Natural Rates of Accretion to Mudflats and Marshes Expected</td>
<td>Highest</td>
<td>Somewhat</td>
<td>Lowest</td>
</tr>
<tr>
<td>Minimizes Impacts on Subtidal Benthic Community</td>
<td>Lowest</td>
<td>Neutral</td>
<td>Neutral</td>
</tr>
<tr>
<td>Minimizes Impacts on Mudflat Community</td>
<td>Neutral</td>
<td>Little</td>
<td>Little</td>
</tr>
<tr>
<td>Minimizes Impacts on Water Column Community</td>
<td>Neutral</td>
<td>Lowest</td>
<td>Little</td>
</tr>
<tr>
<td>Minimizes Impacts on Vegetated Marsh Community</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Lowest</td>
</tr>
<tr>
<td>Minimizes Impacts on Marsh Channel Community</td>
<td>Neutral</td>
<td>Lowest</td>
<td>Lowest</td>
</tr>
<tr>
<td>Flexibility of Method in Avoiding Impacts</td>
<td>Somewhat</td>
<td>Somewhat</td>
<td>Somewhat</td>
</tr>
</tbody>
</table>
Maintenance Dredging Needs versus Strategic Placement Timing

- Maintenance dredging needs may not align with seasonal/daily variability for strategic placement.
- Volume of material needed for strategic placement may differ from material available.
- Access to strategic placement sites with equipment is more limited and costly in comparison to conventional sites.
Working Principles

- Sediment delivery by natural processes keeps accretion within natural rates
- Multi-year study would yield most meaningful results
- Pilot study locations should be representative of strategic placement conditions
Regulatory Strategy

• Current plans (e.g. LTMS), policies, and decisions need to be revisited—and perhaps revised—before strategic placement can be approved on a large scale.

• Regulatory requirements will differ depending on implementing entity.

• Establishment or assignment of a regional entity could
 • Manage the timing and location of placement activities
 • Work with the DMMO to ensure smooth integration
 • Minimize disturbance to ongoing maintenance dredging operations and sensitive habitats and species.

• Pilot study program focused on demonstrating feasibility of, and resolving uncertainties for, both shallow-water placement and water-column seeding.
Program Implementation – A Phased Approach

Pilot Studies
• Form a governance structure to guide the long-term planning and permitting of strategic placement as an alternative to existing disposal options
• Determine efficacy, efficiency and impacts of strategic placement need investigation.
• Understand how future needs for efficient and effective sediment management in SF Bay marshes can be addressed using dredged sediments, either through natural processes or purposeful augmentation.
• Go / No-Go decision

Demonstration Projects
• Place larger volumes of material in strategic shallow-water and water-column locations, and measure fate and impacts of sediment pathways over a longer period of time.
• Up to two years of control-site monitoring and one year of post-placement monitoring.
• Go / No-Go decision
Baseline conditions monitoring and numerical modeling

- Use existing numerical models to determine locations, volumes and timing of placements.
- Match donor sediments to the receiving areas.
- Conduct baseline ecological monitoring for benthic macrofauna and fish.
- Trial placements of very small volumes of tracer to refine physical sampling techniques.
Placement and tracking of dredged sediment and monitoring of short-term effects

- Placement timed with ecological windows.
- Place three sediment mounds (up to 1,250 yd3 each) in shallows.
- Up to 1,250 yd3 for water column seeding at channel mouth (timed with tide).
- Monitor sediment resuspension using sediment flux measurement and tracing of sediment pathways using tagged sediment particles.
Post-placement monitoring for mid- to long-term effects

- Continue particle tracing until fate of tracer has been determined (days to weeks).
- Measure and monitor the ecological recovery from both placement in the shallows and seeding in the water column (months).
Conclusions

• Urgent need for improving resilience of marshes to sea level rise
• Sediment replenishment options include regulatory, physical, logistical, and ecological opportunities & constraints
• Trade-offs and uncertainties
• Use of a pilot allows for exploration of options
• Partnership & collaboration key
Next Steps

- Multi-year, phased pilot using shallow water placement and water column seeding
 - Placement determined by numerical modeling
 - Collect pre-placement benthic and pelagic monitoring data
- Results from each phase inform the next phase
- Effectiveness & ecological effects monitored
- Initial impacts and rates of recovery compared to baseline
- Pilot informs future placements for demonstration projects
Questions

Jamil Ibrahim
916.418.8407
Jamil.Ibrahim@stantec.com