Integrating sound science and adaptive management into a truncated timeline for Central Everglades restoration

Stephen E. Davis III
Everglades Foundation

CERP: Comprehensive Everglades Restoration Plan
CEPP: Central Everglades Planning Project
CEPP is CERP

CURRENT CERP (1999 Plan)

Public and Stakeholder Input

Incorporate Updated Science & Hydrology

INPUTS
- Updated Science
- Updated Information
- SFWMD Recent Efforts
- SFWMD Tools
A lot has happened since 2000

• iPod (2001), iPhone (2007) and iPad (2010)
• Pythons documented to be established
• Long-term WQ plan
• Hurricanes, Drought, Fire, Cold snap
• Changes in operations
• C-111 Spreader, Tamiami Trail, Picayune Strand
• Everglades Science: over 150 technical publications per year since 2000.
CEPP Goals

• Reducing harmful discharges to Northern estuaries (Caloosahatchee and St. Lucie)
• Delivering new, clean water to Central Everglades
• Restoring sheetflow and habitat
Since WRDA 2000

- System-wide performance measures
- Used to evaluate and assess
- Science-based indicators of attributes
- Targets as desired conditions
- Robust and feasible
Revised hydrologic target
Water quality impacts
CEPP Water quality and quantity

- Existing lands and WQ
- FEB vs. deep reservoir
- Performance screened:
 - Additional flow volume
 - Dry standard score
 - Relief to N. Estuaries
- Cost!
Screening: additional flow

DEEP RESERVOIR

FLOW EQUALIZATION BASIN
Screening: dry standard score

DEEP RESERVOIR

FLOW EQUALIZATION BASIN
Ridge-Slough: habitat vs. hydrology

- November: Wet season
 - Mostly inaccessible
 - Mostly larger birds

- January/February: Beginning of dry season
 - Increased density
 - Large and medium-sized birds

- March: Dry season
 - Increased variety and density of birds

- April: Drydown
 - Sparse

- May: Re-flooding
 - Fish and crayfish availability
Losing landscape patterning
Tree islands and soil
Restoring flow to re-shape landscape

- Removing barriers to flow
 - Bridge Tamiami Trail
 - Degrade/gap levees
- More flow, pulsed?
- Along historic flow path
- Seasonal depth and flow targets
NW 3A: How much of a spreader?

Partial (NW corner)

3 spreader features
NW 3A: How much of a spreader?

Partial (NW corner) 3 spreader features

No significant difference
Decompartmentalizing the system
Moving water from 3A to 3B
Moving water from 3B to ENP
3A/3B/ENP: Flow it vs. pumping it

By-pass 3B
Pump from 3B
Flow through 3B
3A/3B/ENP: will it flow?
3A/3B/ENP: where will it flow?
Alt 4R: reaching a TSP

• New science facilitated screening process
• This is a first increment
• Benefits projected down to Florida Bay
• Cost-effective infrastructure
• Flood control and water supply
• We stand to learn a lot
Acknowledgments

- Walter Wilcox (SFWMD) and the CEPP Modeling Group
- Fred Sklar (SFWMD) and Eco sub-team
- CEPP PDT: Matt Morrison (SFWMD) and Kim Taplin (USACE)
- Shannon Estenoz, Bob Johnson (US DOI)
- Kelly Keefe, Kevin Whitman and many others from USACE
Everglades: then and now

- Central & South Florida Project
- Supports > 6 million
 - Water supply
 - Flood control
- Ecological collapse
- WRDA 2000: CERP
Decomartmentalizing the system
Revised hydrologic target
Restoration Strategies: 2012

- **WQBEL**: 10 ppb P long-term geometric mean
- **6,500 acres new Stormwater Treatment Area (STA)**
- **110,000 acre-ft of new storage as Flow Equalization Basins (FEB)**
- **2025 completion at cost of $800 million**
Screening: reduction in harmful discharges

DEEP RESERVOIR

FLOW EQUALIZATION BASIN
NW 3A: Screening to maximize benefit

<table>
<thead>
<tr>
<th>Metric</th>
<th>Performance Measure Metric (Zone 3A-NW)</th>
<th>ECB</th>
<th>FWO</th>
<th>ALT 4R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Inundation Duration</td>
<td>63</td>
<td>61</td>
<td>94</td>
</tr>
<tr>
<td>2.1</td>
<td>Sheetflow -- Timing</td>
<td>20</td>
<td>19</td>
<td>34</td>
</tr>
<tr>
<td>2.2</td>
<td>Sheetflow -- Continuity</td>
<td>4</td>
<td>4</td>
<td>62</td>
</tr>
<tr>
<td>2.3</td>
<td>Sheetflow -- Distribution</td>
<td>24</td>
<td>22</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>Drought Intensity Index</td>
<td>63</td>
<td>63</td>
<td>96</td>
</tr>
<tr>
<td>5.1</td>
<td>Slough Vegetation Suitability -- Hydroperiod</td>
<td>46</td>
<td>46</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>Slough Vegetation Suitability -- Drydown</td>
<td>51</td>
<td>48</td>
<td>85</td>
</tr>
<tr>
<td>5.3</td>
<td>Slough Vegetation Suitability -- Dry Season Depth</td>
<td>22</td>
<td>19</td>
<td>38</td>
</tr>
<tr>
<td>5.4</td>
<td>Slough Vegetation Suitability -- Wet Season Depth</td>
<td>22</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Habitat Suitability Index (0 to 1 Scale)</td>
<td>0.44</td>
<td>0.43</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Challenges for Central Everglades restoration planning

• Shortened planning window: 2 years to plan
• Involving public throughout
• Dealing with uncertainty
• Constraints: available land, WQ, Herbert Hoover Dike, savings clause
CERP Goals and Objectives

Ecological Values
• Increase total spatial extent of natural areas
• Improve habitat and functional quality
• Improve native plants and animals

Economic Values and Social Well-being
• Increase availability of freshwater supplies
• Reduce flood damages
• Provide recreational and navigation opportunities
• Protect cultural and archaeological resources