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> The CBP Climate Change Assessment
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> Overview of Bay Designated Uses

Science, Restoration, Partnership
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> Elements of Chesapeake Water Quality Climate Risk Assessment
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Components of Climate Change
Effect on Tidal Hypoxia
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Watershed Model —— WQ Sediment Transport Model
. increased watershed loads =

increased precipitation volume =

g
increased precipitation intensity = increased temperature =

increased sea level rise = '

increased watershed flows = l

~—increase in temp and evapotranspiratio




Approaches, Methods,
and Findings from the
Watershed
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L ™»  Anensemble of GCM projections from BCSD CMIP5M was used
ceesn - 10 @STIMAte 1995-2025 temperature change.
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Reclamation, 2013. 'Downscaled CMIP3 and CMIP5
Climate and Hydrology Projections: Release of
Downscaled CMIP5 Climate Projections, Comparison
with preceding Information, and Summary of User
Needs', prepared by the U.S. Department of the Interior,
Bureau of Reclamation, Technical Services Center,

Denver, Colorado. 47pp.




> For the 2025 Climate Change Estimate:
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The trends in annual precipitation on a county level were developed through the application of PRISM data
and analysis provided and recommended by Jason Lynch, EPA, and Karen Rice, USGS. The annual PRISM
dataset for the years 1927 to 2014 (88 years) were used in for the regression trend analysis. For the analysis
PRISM data were first spatially aggregated for each Phase 6 land segments. The Phase 6 land segments
typically represent a county. For each land segment a simple linear trend was fitted to the annual rainfall
dataset.
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Annual rainfall volumes for the 88-year period linear regression lines are shown in red for the two land
segments (counties) — (a) Centre County in Pennsylvania and (b) District of Columbia. The values for the

slope of the regression lines, and the corresponding 30-year projections in the rainfall volume (1995 to
2025) are also shown. Source: Section 12 of Phase 6 Documentation



> Assessment of Influence of 2025 Climate Change in the Watershed
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CENTRE, PA

Projections of rainfall increase using

w#yﬁ—%ﬁhr trend in 88-years of annual PRISMI! data
pR‘.smfemngmmhlue@mmmre@hown Change in Rainfall Volume 2021-2030 vs. 1991-2000

2025 Rainfall Prjection (percent change) Major Basins PRISM Trend
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:3:?:::2 Rappahannock River Basin 3.2%

ol York River Basin 2.6%

Eastern Shore 2.5%

James River Basin 2.2%

Potomac River Basin 2.8%

Susquehanna River Basin 3.7%

Chesapeake Bay Watershed 3.1%

) [1] Parameter-elevation Relationships on Independent Slopes Model 9
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The study analyzed USGS GAGES-II data for a subset of Hydro-Climatic
Data Network 2009 (HCDN-2009).

Annual Average Streamflow in the United States, 1940-2014
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Data source: USGS (U.S. Geological Survey). 2016. Analysis of data from the National Water Information System. Accessed May
2016.

For more information, visit U.S. EPA’s “Climate Change Indicators in the United States” at www.epa.gov/climate-indicators.

U.S. Environmental Protection Agency. 2016.
Climate change indicators in the United States,
2016. Fourth edition. EPA 430-R-16-004.
www.epa.gov/climate-indicators.

Annual average percent change were calculated using Sen slope (Helsel and Hirsch, 2002).
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Lins, H.F. 2012. USGS Hydro-Climatic Data Network 2009 (HCDN-2009). U.S. Geological Survey Fact Sheet 2012-3047. https://pubs.usgs.gov/fs/2012/3047.

Helsel, D.R., and R.M. Hirsch. 2002. Statistical methods in water resources. Techniques of water resources investigations, Book 4. Chap. A3. U.S. Geological Survey. https://pubs.usgs.gov/twri/twri4a3.

1940-2014 streamflow trends based on observations

Karen C. Rice, Douglas L. Moyer, and Aaron L. Mills,
2017. Riverine discharges to Chesapeake Bay: Analysis
of long-term (1927 - 2014) records and implications for

future flows in the Chesapeake Bay basin JEM 204

(2017) 246-254

USGS station ID  Precipitation Discharge
Slope p-value  Slope p-value
04252500 0.0007 0.0011 0.0021 <0.0001
01512500 0.0008 0.0007 0.0016 0.0028
01503000 0.0007  0.0022 0.0013 0.0181
01531000 0.0006  0.0219 0.0018 0.0030
01531500 0.0007 0.0044 0.0016 0.0029
01532000 0.0006 0.0374 0.0015 0.0330
01534000 0.0005 0.0497 0.0015 0.0120
01550000 0.0005 0.0493 0.0019 0.0015
01543000 0.0004 0.1000 0.0018 0.0058
01545500 0.0004 0.0953 0.0017 0.0026
01536500 0.0006  0.0078 0.0016 0.0027
01551500 0.0005 0.0612 0.0017 0.0017
01439500 0.0005 0.0972 0.0007 0.1661
01541500 0.0003 0.2357 0.0017 0.0017
01540500 0.0006  0.0111 0.0016 0.0023
01541000 0.0004 0.0985 0.0016 0.0021
01567000 0.0004  0.1577 0.0011 0.0250
01570500 0.0005 0.0260 0.0013 0.0088
North-South Split

01562000 0.0004 0.1693 0.0007 0.2082
01638500 0.0004 0.1150 0.0008 0.1026
01608500 0.0004 0.1725 0.0010 0.0833
01636500 0.0005 0.1245 0.0008 0.0624
01606500 0.0003 0.1958 0.0009 0.1108
01668000 0.0006  0.0794 0.0004 0.4727
02035000 0.0003 0.2653 —0.0001 0.8243
02019500 0.0002  0.4333 0.0003 0.4836
03488000 0.0003 0.2480 0.0006 0.2841
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Trends in Observed Rainfall Intensity
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Observed changes in rainfall intensity in the Chesapeake region over the
last century. The equal allocation distribution (blue) is contrasted with
the distribution obtained based on observed changes (red).

Source: Groisman et al. 2004



™ Chesapeake Bay Watershed
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& Temperature trends for the six CBP states
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Annual temperature for | ] . NY +0.90°C|
1895 to 2015 are shown. 4o PATOB L | | "

Annual Temperature
Trend Line

[0 95% Confidence Limits

1) WV +0,67:€

Approx. increases
over the last 30 years
based on the trend

line h T e NOAA National Climatic Data Center
are snown. ' ' - https://www.ncdc.noaa.gov/temp-and-precip/state-temps/

15


http://www.ncdc.noaa.gov/temp-and-precip/state-temps/

> Elements of 2025 Climate Change (1995-2025)
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> Elements of 2035 Climate Change (1995-2035)
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Air-temperature
increase: 1.39 °C
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> Estimates of Climate Only and Climate and Land Use
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Marginal Differences in Freshwater Delivery Marginal Differences in Sediment Delivery
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Hypoxia volume (km3)

Summer (Jun.-Sep.) Hypoxia Volume (<1 mg/l) 1991-
2000 in the Whole Bay Under 2025 WIP3 Condition
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>  Bottom DO Change: 1995 to 2025
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Keeping all other factors constant, sea level rise and increased watershed flow reduce
hypoxia in the Bay, but the predominant influence are the negative impacts of increased
water column temperature.
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Modeled Nitrogen Reductions
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Overall, the CBP found that a target load of 5
million pounds nitrogen and 0.6 million pounds
phosphorus will be sufficient to offset 30 years of
climate change in the Chesapeake Bay.

> Climate Target Loads in Perspective

Modeled Phosphorus Reductions
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Model load reduction estimates from CAST-
2019 (current version of the CBP watershed
model)
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ATLAS 14vs OBSERVED

Comparison of the observed 24-hour rainfall events in the Negley Run
Watershed (PA) from 2003-2018 (total) to Atlas 14 estimates (expected)

B Total count

Expected count

18
10
8
6
3.2
1.6 > 2 2
B m> m*>

2-year 5-year 10-year 25-year 50-year 100-year
23 2.9 3.3 3.9 L.b 4.9

Expected return interval/depth (inches)

Fischbach et al. (2020) https://www.rand.org/pubs/research reports/RRA564-1.html




CLIMATE CHANGE-INFORMED IDF CURVES

Data Tool: https://midatlantic-idf.rcc-acis.org/

Webinar: https://chesapeakestormwater.net/events/projected-
chesapeake-idf-curves/
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(> Conclusions:

Climate change Is a multigenerational challenge for the CBP and is a force multiplier for
headwinds to the Chesapeake restoration.

However, the CBP is working on management practices that are effective counters to climate

change such as:

« The design and accelerated adoption of stormwater management practices appropriately
designed for increased rainfall volumes and intensities that are expected in the future for all
counties in the Chesapeake watershed.

« Examination of the top tier agriculture and urban BMPs that are most vulnerable to future
climate risk, with an emphasis on practices that could be adapted to become more resilient to
future climate conditions of increased rainfall intensities and volumes.

« A quantification of the co-benefits of BMPs that mitigate future climate risk.

« Findings in JAWRA Featured Collection Influence of Climate Change on Chesapeake Bay
Water Quality.

The climate change risk to the Chesapeake’s living resource-based water quality
standards can be effectively managed and the CBP is actively addressing the
challenge.
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