D'Olive Creek Stream Restoration

Dauphin Island Sea Lab

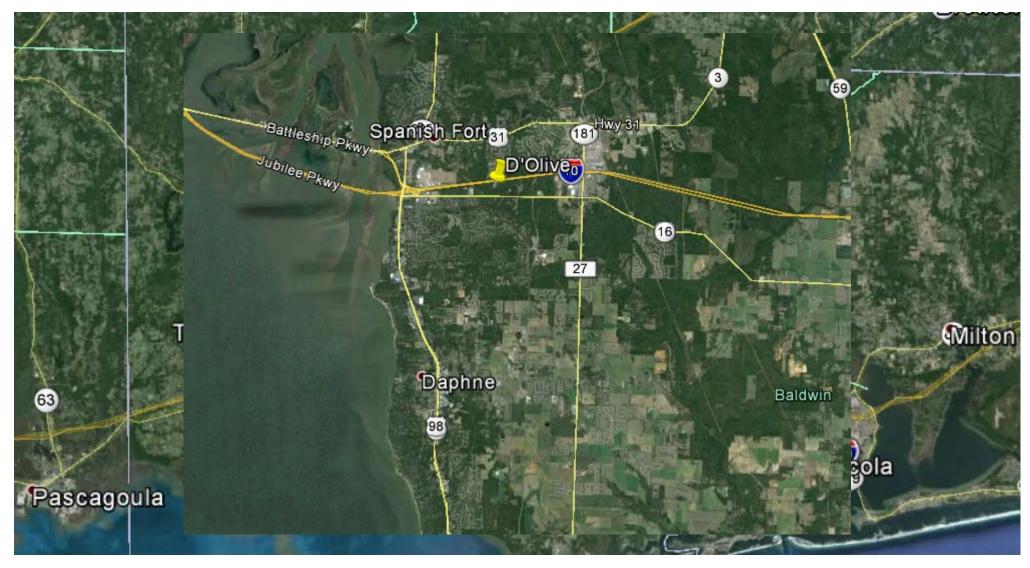
Mobile Bay National Estuary Program

Goodwyn, Mills, and Cawood, Inc.

Justin N. Barrett, PE

Outline

Project Location Former Conditions Current Conditions Project Objectives Project Constraints Geomorphic Assessment Stream Stability Assessment Hydrology Assessment Conceptual Design Design Approach Design Iterations


Modeling

Optimization

Project Location

Former Conditions

Current Conditions

Project Objectives

Objective #1: Design a self-sustaining, natural, stable stream

Objective #2: Reduce erosion and sediment supply through the reach

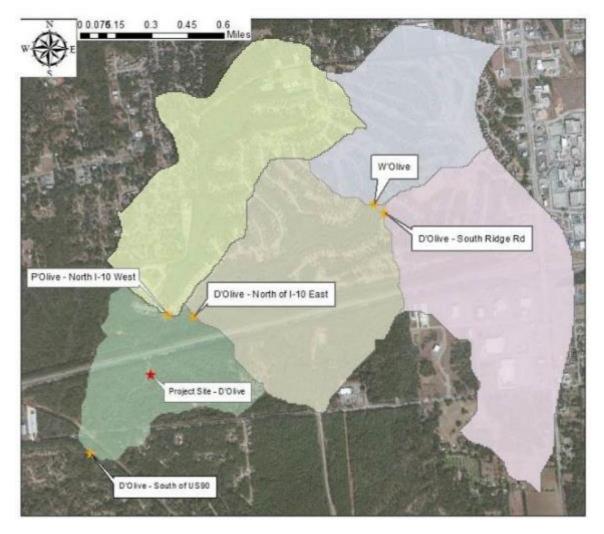
Objective #3: Design a stream and floodplain to handle design applied shear stresses without excess erosion or floodplain scour

Objective #4: Improve the riparian buffer functions of stability, habitat, and aesthetics

Objective #5: Maintain the integrity and function of the culverts at I-10 and work in conjunction with the ALDOT design for a stilling basin

Project Constraints

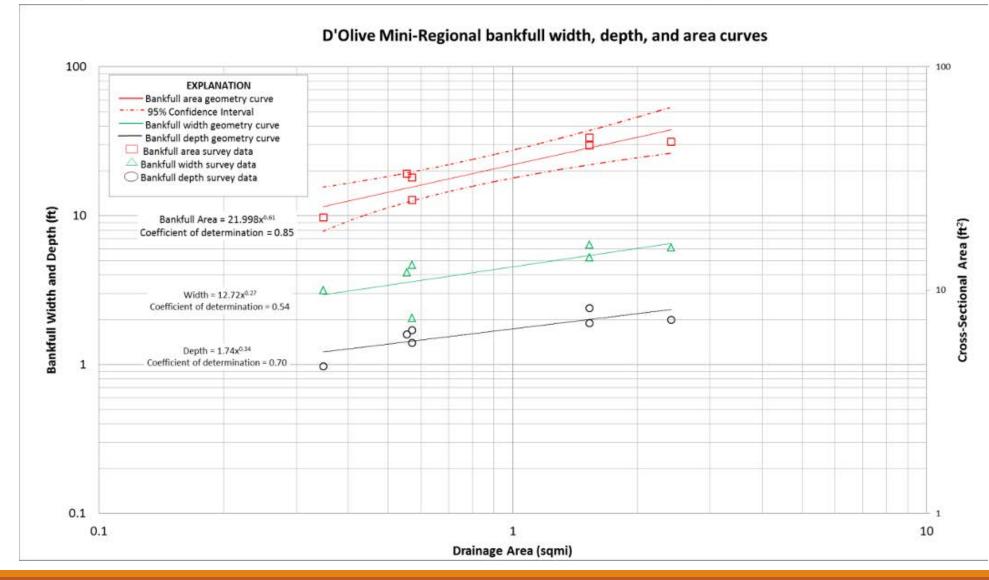
- Upstream and Downstream Culvert Grade Control
- Valley Topography
- Private Property
- Utilities



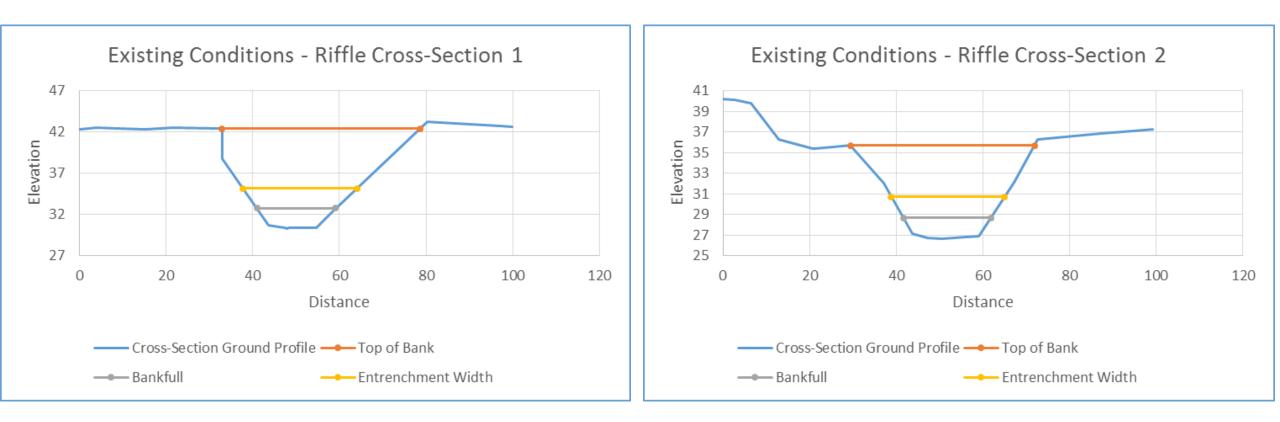
Design Approach Natural Channel Design

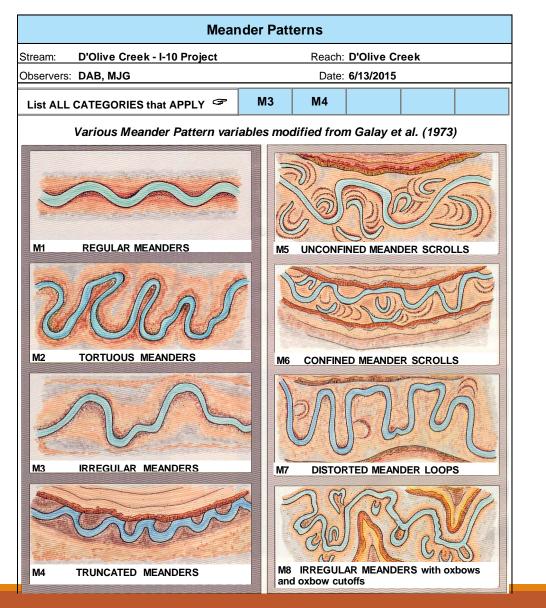
- Mini Regional Curve Development
- Watershed and Stream Stability Assessment
- Conceptual Design
- Preliminary Design
- Modeling
- Optimization
- Final Design
- Stability and Enhancement Structures

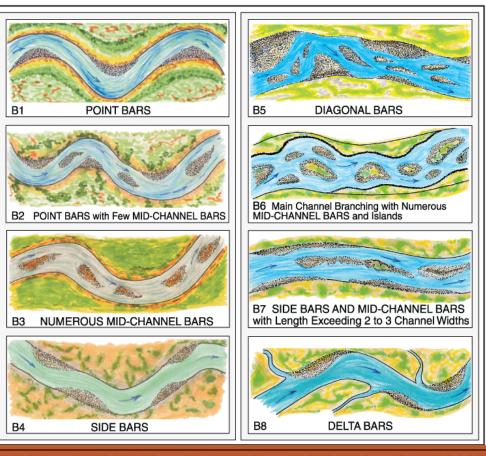
Parameter	E	cisting Stream	m	I	Design Stream			Potential Stream Evolution		
- ALALIFECT	Min	Median	Max	Min	Median	Max	Min	Median	Max	
Stream name	D'Olive Creek		D'Olive Creek			D'Olive Creek				
Stream type		FS			C5/4		E5/4			
Drainage area, DA (mi ²)		2.2			2.2			2.2		
Mean riffle depth, due (ft)	1.8	1.6	1.6	1.38	1.35	1.40	2.00	2.06	1.94	
Riffle width, $WW\left(ft\right)$	18.1	20.2	20.2	24.0	24.4	25.0	15.0	16.0	18.0	
Width-to-depth ratio, [Waa/daa]	9.9	12.3	12.4	17.5	18.0	18.5	7.5	7.8	9.3	
Riffle cross-section area, Ass (ft ²)	33.0	33.0	33.0	33	33	35	30	33	35	
Max riffle depth, d=44 (ft)	2.0	2.1	2.4	2.2	2.3	2.5	2.6	2.9	2.9	
Max riffle depth ratio, [d=66/d66]	1.1	1.3	1.5	1.6	1.7	1.8	13	1.4	1.5	
Mean pool depth, d $\omega_{\rm F}({\rm ft})$	2.8	2.6	2.7	1.4	1.5	1.6	2.4	2.7	2.7	
Mean pool depth ratio, [dwp/dw]	1.5	1.6	1.7	1.5	1.6	1.6	1.2	1.3	1.4	
$\texttt{Pool width}, \texttt{Ww}_{\texttt{F}}\left(ft \right)$	32.0	45.8	50.9	27.6	29.3	30.0	14.0	16.0	18.0	
Pool width ratio, [Waag/Waa]	1.8	23	25	1.2	1.2	1.2	0.9	1.0	1.0	
Pool cross-section area, Austria (ft ²)	88.8	117.8	138.9	39.6	42.9	49.0	33.6	42.9	49.0	
Pool area ratio, [Aug/Aug]	2.7	3.6	4.2	1.2	13	1.4	1.1	13	1.4	
Max pool depth, deside (ft)	2.6	3.3	4.0	3.6	3.7	3.9	4.0	4.5	4.9	
Max pool depth ratio, [d=two/dwi]	1.4	2.0	2.5	2.6	2.7	2.8	2.0	2.2	2.5	
Low bank height, LBH (ft)	8.2	9.1	12.0	2.2	2.3	2.5	2.6	3.0	3.4	
Low bank height ratio, [LBH/d=66]	4.2	4.4	4.9	1.0	1.0	1.0	1.0	1.1	1.2	
Width flood-prone area, Wigs (ft)	26.3	24.3	26.2	36	120	190	36	120	190	
Entrenchment ratio, ER [Wips/Wild]	1.45	1.20	1.30	1.5	4.9	7.6	2.4	7.5	10.6	
Bankfull mean velocity, use - Q/A (ft/s)	3.9	4.2	4.5	3.9	4.2	4.3	4.3	4.2	43	
Bankfull discharge, Qia (cfs)	130	140	150	130	140	150	130	140	150	
Meander length, $L_{\mathbf{m}}\left(ft\right)$	89.0	234.5	393.0	168.0	188.0	210.0	168.0	188.0	210.0	
Meander length ratio [Le/Wild]	4.9	11.6	19.5	6.9	7.7	8.6	10.5	11.8	13.1	
Radius of curvature, Rc (ft)	28.0	46.5	28.0	53.0	63.0	73.0	50.0	60.0	70.0	
Radius of curvature ratio [Re/WW]	1.5	23	1.4	2.2	2.6	3.0	3.1	3.8	4.4	


Mini Regional Curve Development

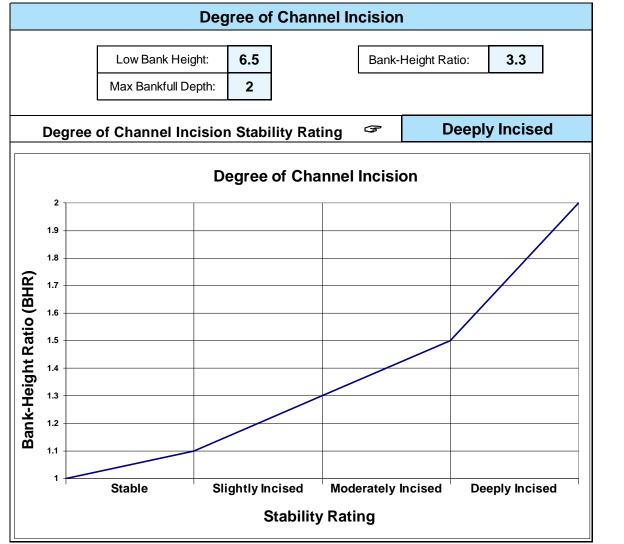
Location		Channel Classification	Drainage area (mi ²)	Bankfull Width (ft)	Bankfull depth (ft)	Bankfull cross- sectional area (ft ²)	W/D Ratio
D'Olive -	South of US 90 (XS1)	E5	2.415	15.5	2	31.4	7.8
D'Olive -	North of I-10 East Branch (XS2)	E5	1.533	14	2.4	33.4	5.8
D'Olive -	North of I-10 East Branch	E5	1.533	16	1.9	29.6	8.4
P'Olive -	North of I-10 West Branch	E5	0.554	12	1.6	19.1	7.5
D'Olive -	South of D'Olive Ridge Rd (East Trib XS1)	E5	0.57	13	1.4	18.1	9.3
D'Olive -	South of D'Olive Ridge Rd (East Trib XS2)	E5	0.57	7.5	1.7	12.7	4.4
W'Olive -	South of D'Olive Ridge Rd (West Trib)	E5	0.348	10	0.97	9.7	10.3

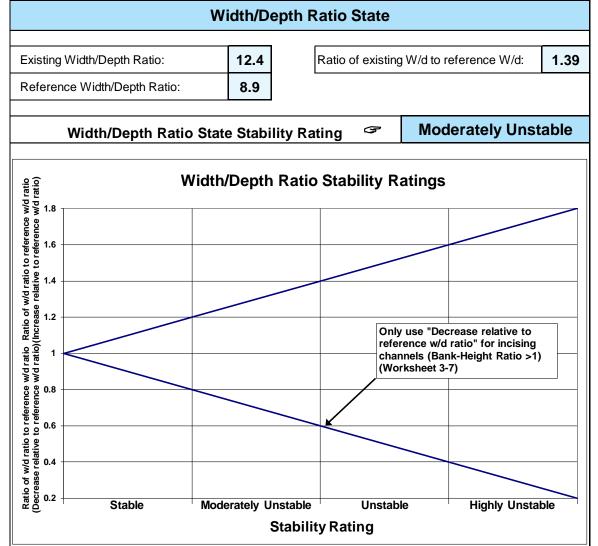


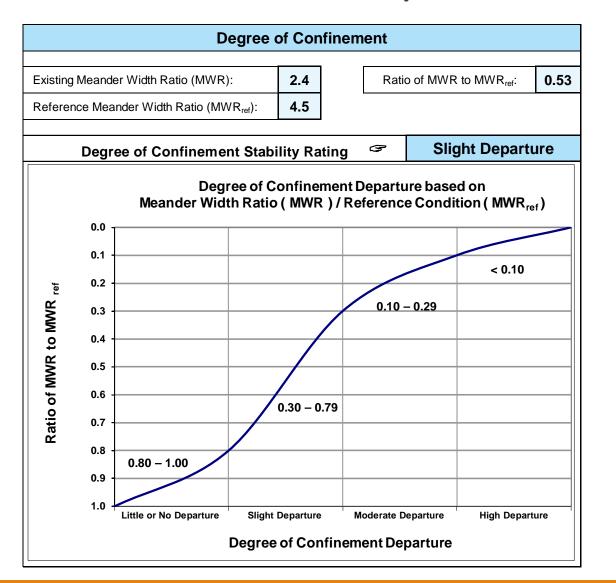

Mini Regional Curve Development


- Meander Patterns
- Depositional Features
- Degree of Incision
- Width to Depth Ratio State
- Degree of Confinement
- Stream Succession Stage Shifts

Depositional Patterns									
Stream: D'Olive Creek - I-10 Project Reach: D'Olive Creek									
Observers:	ervers: DAB, MJG Date: 6/13/2015								
List ALL	List ALL CATEGORIES that APPLY 🖙 B1 B2 B4								
Various Depositional Features modified from Galay et al. (1973)									


ARCHITECTURE


TECHNICAL II


. INTERIOR DESIGN

LANDSCAPE PLAN

IRVEYING TRANSPOR

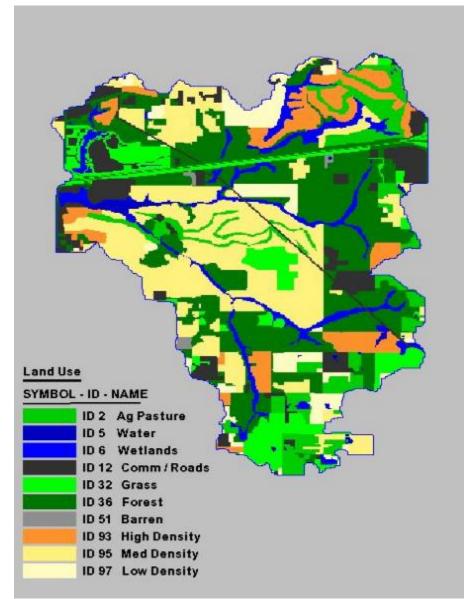
Stream: D'Olive Creek	Stream Type: F5			
Location: I-10	Valley Type: VIII			
Observers: DAB, MJG	Date: 04/13/2015			
Stream Type Stage Shifts (Figure 3-14)	Stability Rating (Check Appropriate Rating)			
Stream Type at potential, $(C \rightarrow E)$, $(F_b \rightarrow B)$, $(G \rightarrow B)$, $(F \rightarrow B_c)$, $(F \rightarrow C)$, $(D \rightarrow C)$	Stable			
(E→C), (B→High W/d B), (C→High W/d C)	Moderately Unstable			
$(G_c \rightarrow F)$, $(G \rightarrow F_b)$, $(F \rightarrow D)$, $(C \rightarrow F)$	Unstable			
$(C \rightarrow D), (A \rightarrow G), (B \rightarrow G), (D \rightarrow G), (C \rightarrow G),$ $(E \rightarrow G), (E \rightarrow A)$	Highly Unstable			

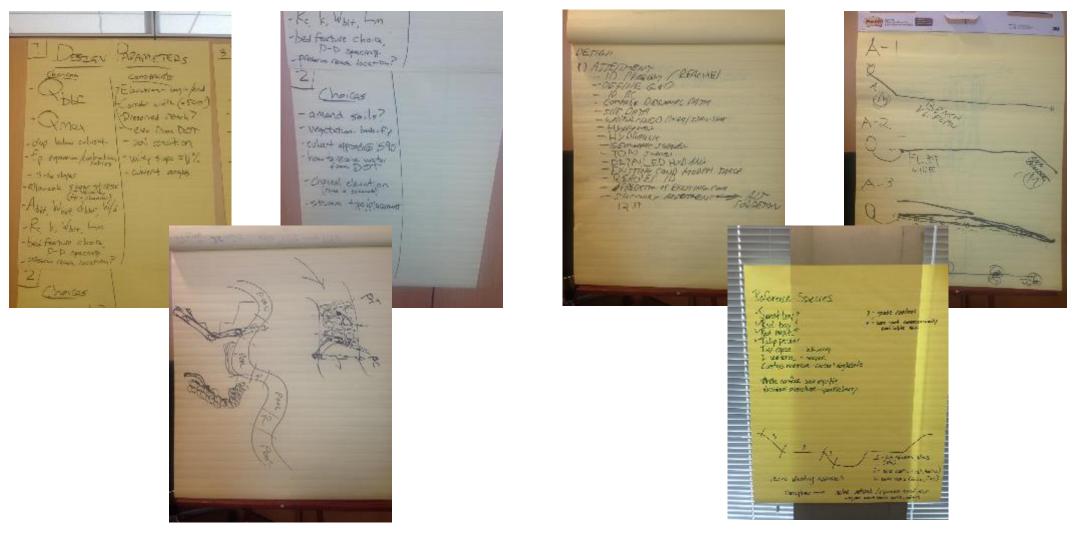
Stream: D'Olive Creek - I-10 Project Stream Type: F5/C5								
Location: I-10			Valley Ty					
Observers: DAB, MJG	Observers: DAB, MJG Date: 04/13/2015							
Lateral stability criteria		Lateral Stabilit	y Categories					
(choose one stability category for each criterion 1–5)	Stable Moderatel Unstable		Unstable	Highly Unstable	Selected Points (from each row)			
W/d Ratio State (Worksheet 3-8)	< 1.2	1.2 – 1.4	1.4 – 1.6	> 1.6	4			
	(2)	(4)	(6)	(8)				
Depositional Patterns (Worksheet 3-5)	B1, B2	B4, B8	B3	B5, B6, B7	2			
	໌ (1)	(2)	(3)	(4)				
Meander Patterns (Worksheet 3-4)	M1, M3, M4		M2, M5, M6, M7, M8		1			
	(1)		(3)					
Streambank Erosion: 4 Unit Rate (Tons/yr/ft)	< 0.006	0.006 - 0.04	0.041 - 0.07	> 0.07	8			
(Worksheet 3-13)	(2)	(4)	(6)	(8)				
Degree of Confinement 5 (MWR / MWR _{ref})	> 0.8	0.3 – 0.79	0.1 – 0.29	< 0.1	2			
(Worksheet 3-9)	(1)	(2)	(3)	(4)				
Total Points								
Lateral Stability Category Point Range								
Overall Lateral Stability Category (use total points and check stability rating)	Stable < 10	Moderately Unstable 10 – 12	Unstable 13 – 21	Highly Unstable > 21				
and check stability rating)			v		AL INT			

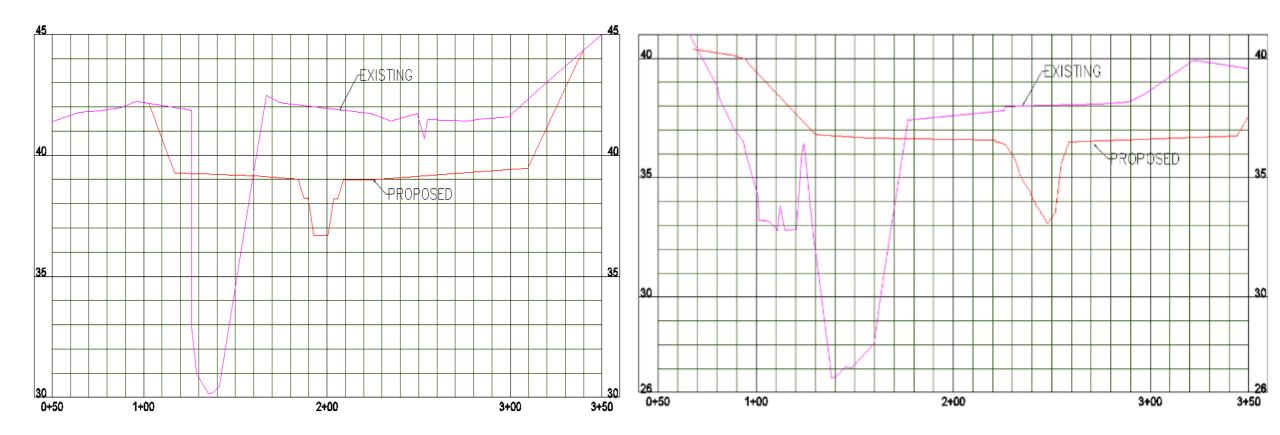
Stream: D'Olive Creek	(Stream Type:	F5	
Location: I-10			Valley Type:	VIII	
Observers: DAB, MJG			Date:	04/13/2015	
Vertical Stability Criteria (choose one stability category for each criterion 1–5)	Vertical Stabili	ity Categories for Slightly Incised	Channel Incision Moderately Incised	n / Degradation Degradation	Selected Points (from each row)
Sediment 1 Competence (2-D FESWMS)	Does not indicate excess competence	Trend to move larger sizes than D_{100} of bar or > D_{84} of bed	D ₁₀₀ of bed moved	Particles much larger than D ₁₀₀ of bed moved	8
	(2)	(4)	(6)	(8)	
Sediment Capacity (2-D FESWMS)	Does not indicate excess capacity	Slight excess energy: up to 10% increase above reference	Excess energy sufficient to increase load up to 50% of annual load	Excess energy transporting more than 50% of annual load	8
	(2)	(4)	(6)	(8)	
Degree of Channel 3 Incision (BHR) (Worksheet 3-7)	1.00 – 1.10	1.11 – 1.30	1.31 – 1.50	> 1.50	8
(WORKSheet 3-7)	(2)	(4)	(6)	(8)	
Stream Succession 4 States (Worksheets 3-16 and 3-7)	Does not indicate incision or degradation	If BHR > 1.1 and stream type has W/d between 5–10	lf BHR > 1.1 and stream type has W/d less than 5	$\begin{array}{l} (B {\rightarrow} G), \ (C {\rightarrow} G), \\ (E {\rightarrow} G), \ (D {\rightarrow} G), \\ (A {\rightarrow} G), \ (E {\rightarrow} A) \end{array}$	4
,	(2)	(4)	(6)	(8)	
Confinement 5 (MWR / MWR _{ref}) (Worksheet 3-9)	0.80 – 1.00	0.30 – 0.79	0.10 – 0.29	< 0.10	2
(WORKSheet 3-9)	(1)	(2)	(3)	(4)	
				Total Points	30
	Vertical Stabi	lity Category Poi Degra	nt Range for Cha dation	nnel Incision /	
Vertical Stability for Channel Incision/ Degradation (use total points and check stability rating)	Not Incised < 12	Slightly Incised 12 – 18 □	Moderately Incised 19 – 27	Degradation > 27 I	P O R T A T

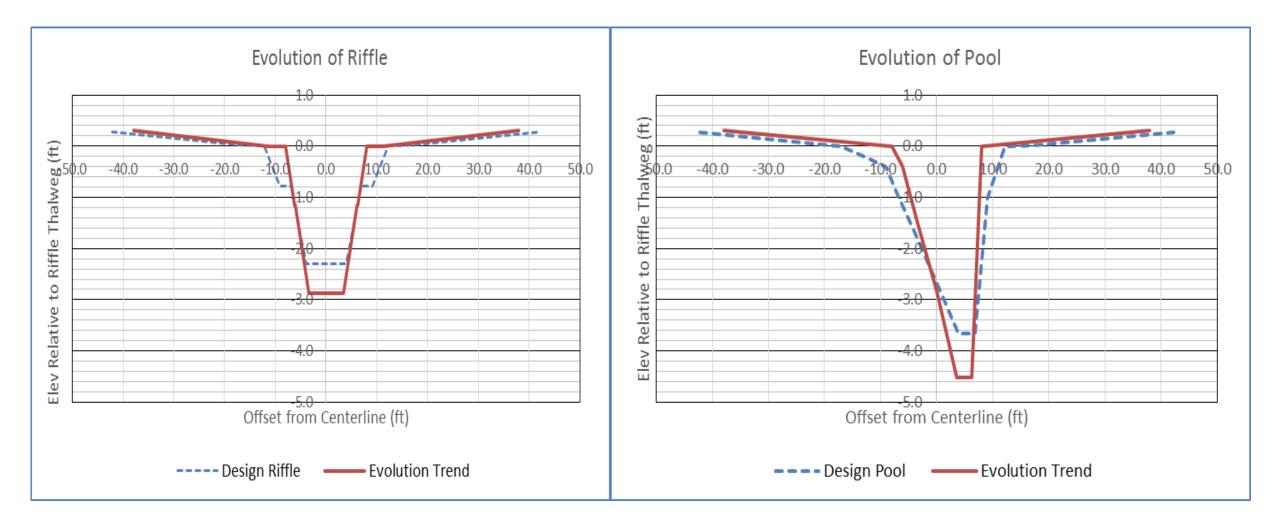
- Findings
 - Lateral Stability → Unstable System
 - Instream Depositional Features
 - Degree of Confinement
 - Streambank Erosion Potential
 - Vertical Stability \rightarrow Degraded System
 - Incised System
 - Upstream Head Cut
 - Instream Energy during High Flows

Conclusion

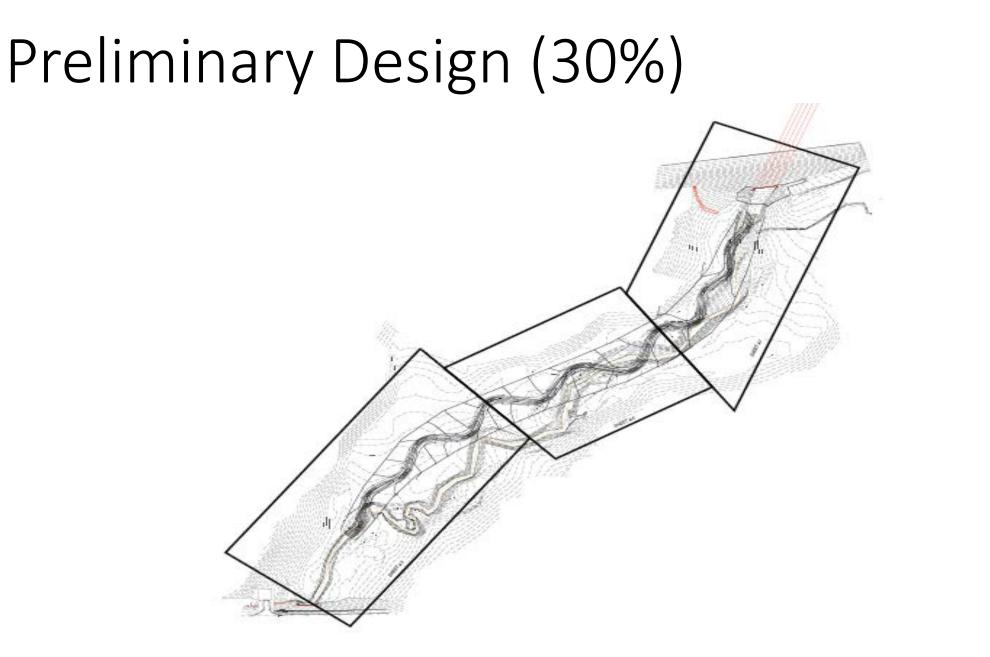

- Major Channel Realignment
- Adjustment of Profile
- Floodplain Access
- Decreased Shear Stress
- Reduce Bank Erosion
- Decrease Velocities


Hydrology Assessment


HYDRO ENGINEERING SOULTIONS A DIVISION OF TRIMBLE

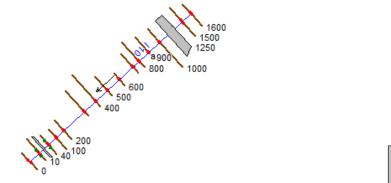

Conceptual Design

Design Approach


Design Approach

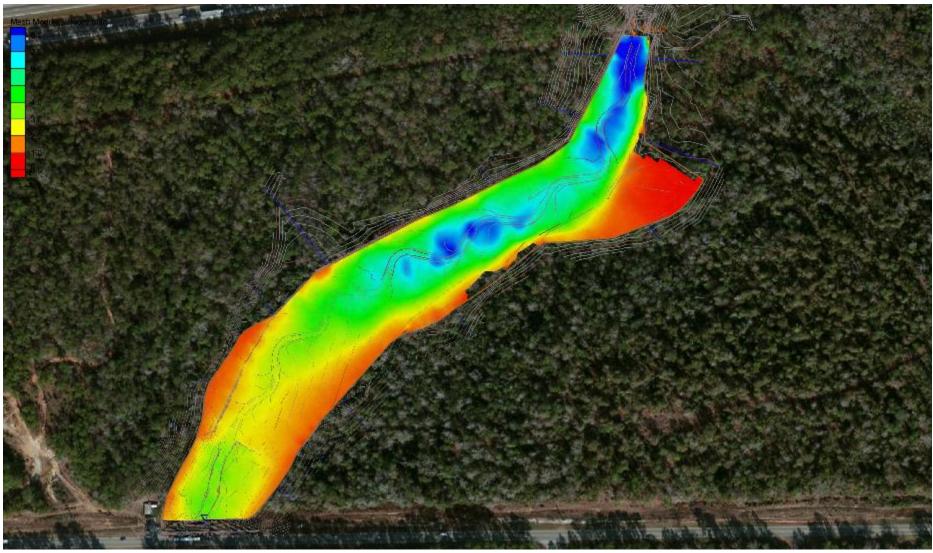
Design Approach

STREAM MORPHOLOGY TABLE

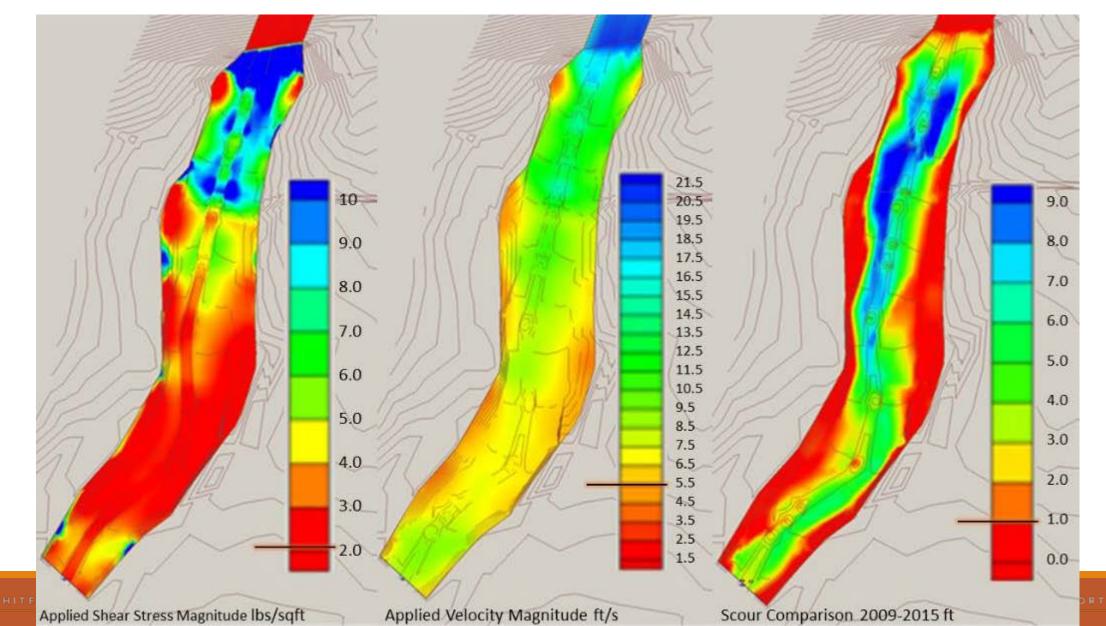

Stream name	D'Olive Creek					
Stream type	C5/4					
Drainage area, DA (sq mi)	2.2					
Design Parameters	Minimum	Median	Maximum			
Mean riffle depth, dbkf (ft)	1.38	1.35	1.40			
Riffle width, Wbkf (ft)	24.0	24.4	25.0			
Width-to-depth ratio, [Wbkf/dbkf]	17.5	18.0	18.5			
Riffle cross-section area, Abkf (sq ft)	33	33	35			
Max riffle depth, dmbkf (ft)	2.2	2.3	2.5			
Pool width, Wbkfp (ft)	27.6	29.3	30.0			
Pool cross-section area, Abkfp (sq ft)	39.6	42.9	49.0			
Max pool depth, dmbkfp (ft)	3.6	3.7	3.9			
Riffle length, Lrif (ft)	39.0	56.1	73.2			
Pool length, Lp (ft)	48.0	61.0	75.0			
Entrenchment ratio, ER [Wfpa/Wbkf]	1.5	4.9	7.6			
Bankfull discharge, Qbkf (cfs)	130	140	150			
Meander length, Lm (ft)	168	188	210			
Belt width, Wblt (ft)	73	85	98			
Radius of curvature, Rc (ft)	53	63	73			
Pool-to-pool spacing, p-p (ft)	100	115	135			
Valley slope, VS (ft/ft)	0.0081					
Average water surface slope, S (ft/ft)	0.0073					
Sinuosity, k - SL/VL (ft/ft) 1.11						

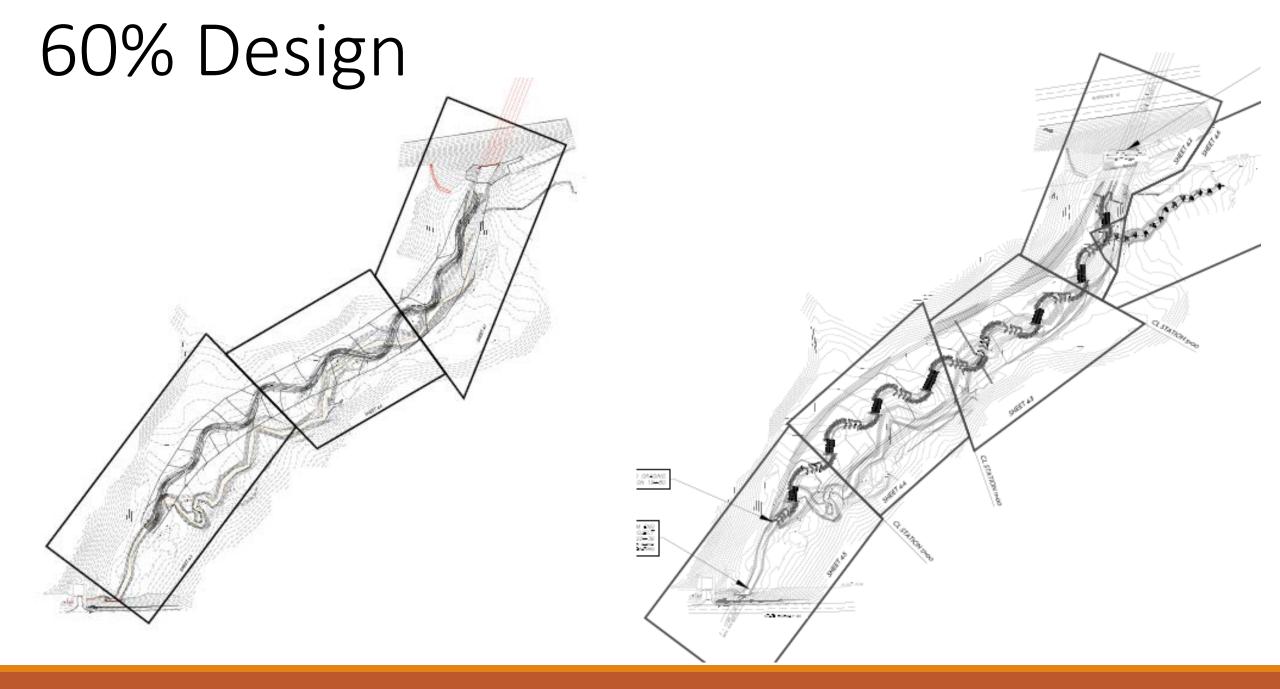
HEC-RAS Modeling

HEC-RAS Plan: Pla	n 08 - River: 110 -
-------------------	---------------------

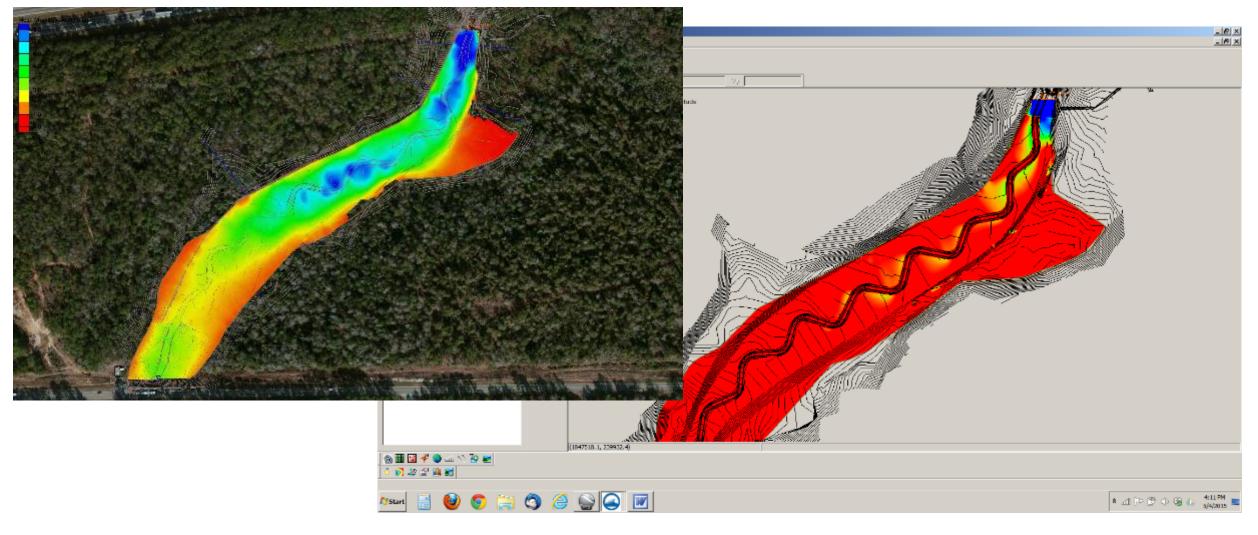

River Sta	Profile	Q Total	W.S. Elev	Vel Chnl	Shear LOB	Shear Chan	Shear ROB	Shear Total
		(cfs)	(ft)	(ft/s)	(lb/sq.ft)	(lb/sq.ft)	(lb/sq.ft)	(lb/sq.ft)
1600	April 29 GSSHA	3750.00	56.79	4.37	0.35	0.63	0.38	0.40
1500	April 29 GSSHA	3750.00	56.44	4.80	0.25	0.75	0.34	0.43
1250		Culvert						
1000	April 29 GSSHA	3750.00	47.52	10.78	2.87	4.24	2.91	3.16
900	April 29 GSSHA	3750.00	46.08	8.79	2.06	2.88	1.44	1.71
800	April 29 GSSHA	3750.00	45.01	7.39	1.58	2.07	1.11	1.38
700	April 29 GSSHA	3750.00	44.25	8.01	1.83	2.43	0.96	1.36
600	April 29 GSSHA	3750.00	42.04	9.06	2.31	3.25	2.15	2.35
500	April 29 GSSHA	3750.00	40.47	7.34	1.53	2.07	1.02	1.22
400	April 29 GSSHA	3750.00	39.62	5.96	1.01	1.29	0.70	0.82
300	April 29 GSSHA	3750.00	39.26	4.67	0.56	0.72	0.34	0.40
200	April 29 GSSHA	3750.00	38.78	4.80	0.35	0.71	0.34	0.37
100	April 29 GSSHA	3750.00	38.42	5.95	0.53	1.13	0.46	0.58
40	April 29 GSSHA	3750.00	38.17	5.31	0.51	0.88	0.57	0.65
20		Culvert						
10	April 29 GSSHA	3750.00	33.10	9.29	0.55	3.10	1.22	1.95
0	April 29 GSSHA	3750.00	32.34	7.34	0.79	2.04	0.56	1.11

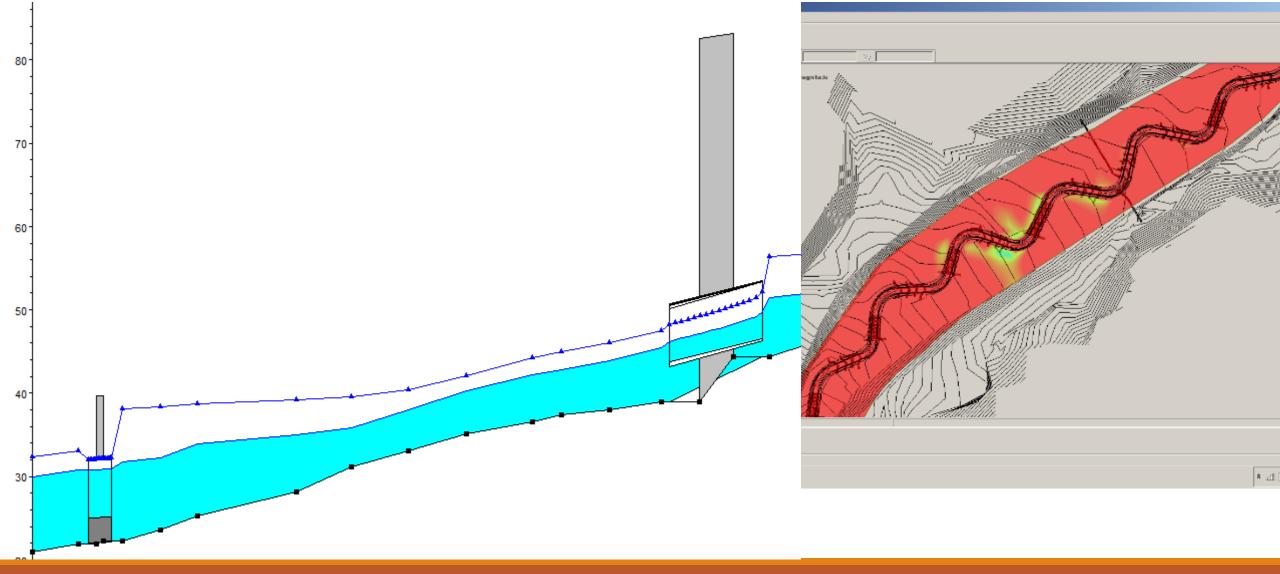
2-D Hydraulic Modeling 30% Design 3750 cfs


HYDRO ENGINEERING SOULTIONS A DIVISION OF TRIMBLE

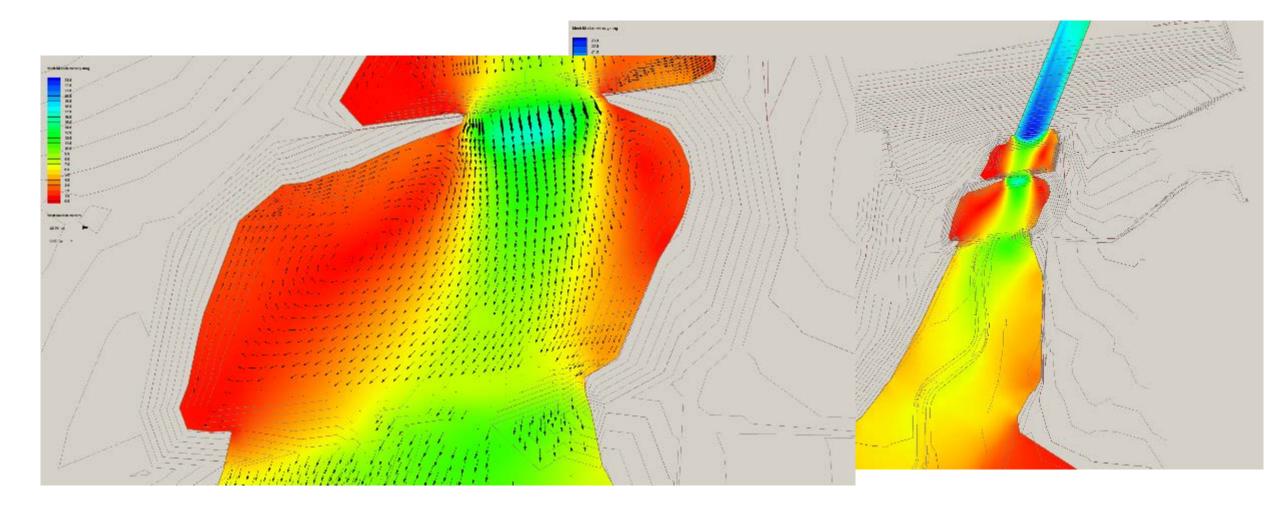

Former Conditions

Former Conditions

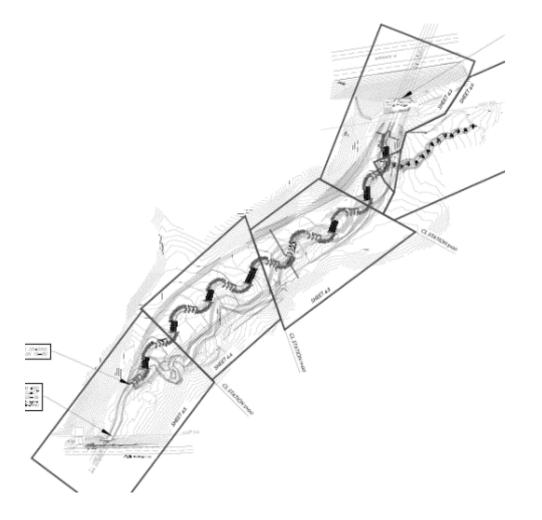

HYDRO ENGINEERING SOULTIONS A DIVISION OF TRIMBLE

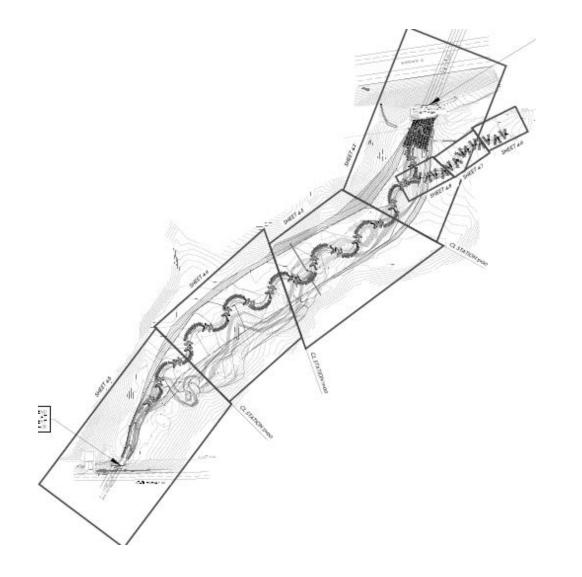


2-D Hydraulic Modeling 60% 3750 cfs

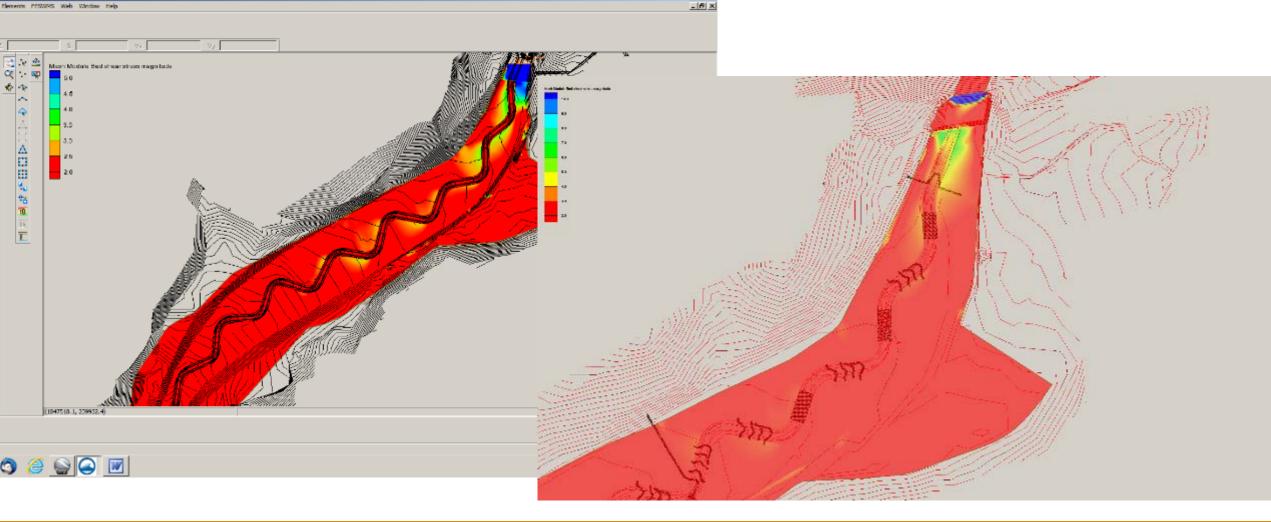


2-D Hydraulic Modeling 60% 1680 cfs

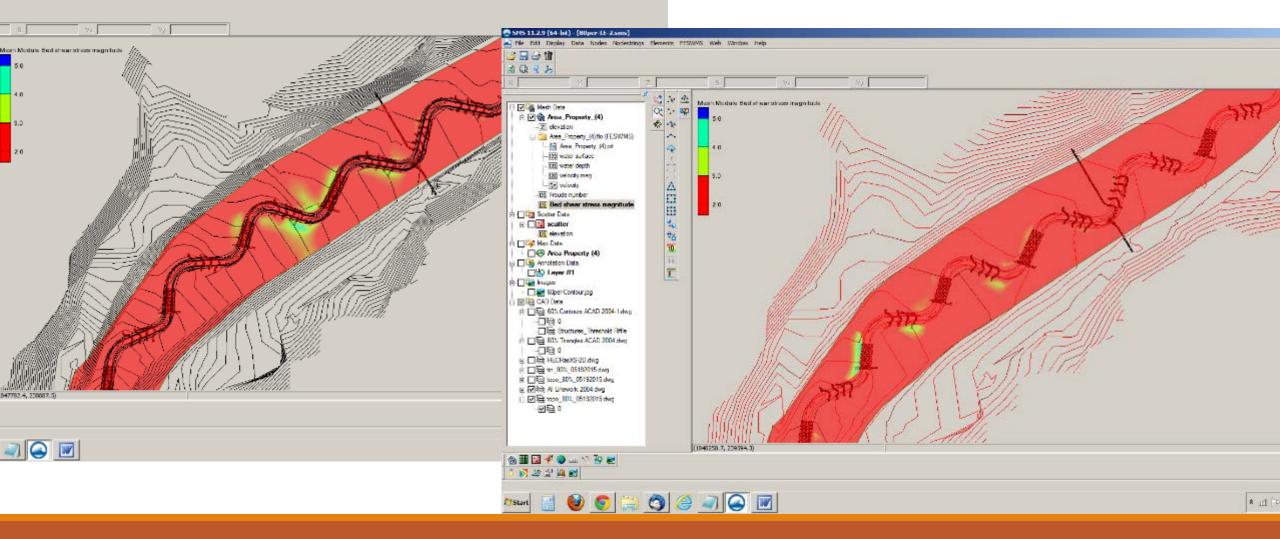



Culvert Outlet Modeling

HYDRO ENGINEERING SOULTIONS A DIVISION OF TRIMBLE

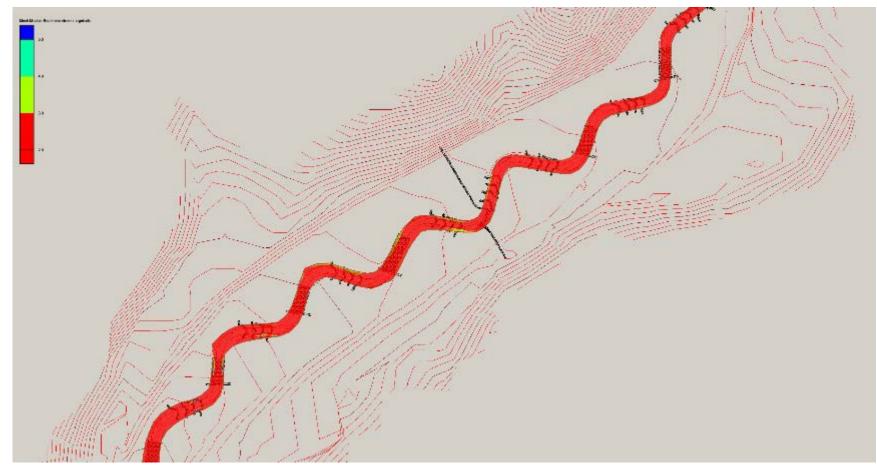

90% Design

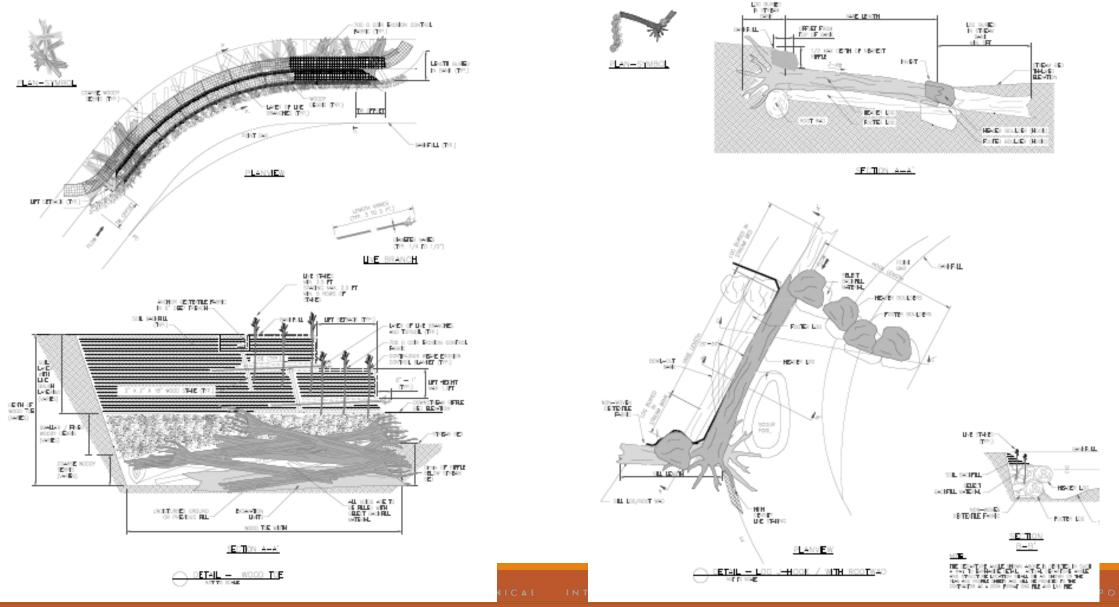
2-D Hydraulic Modeling 90% Design 3750 cfs


HYDRO ENGINEERING SOULTIONS A DIVISION OF TRIMBLE

_ 8 ×

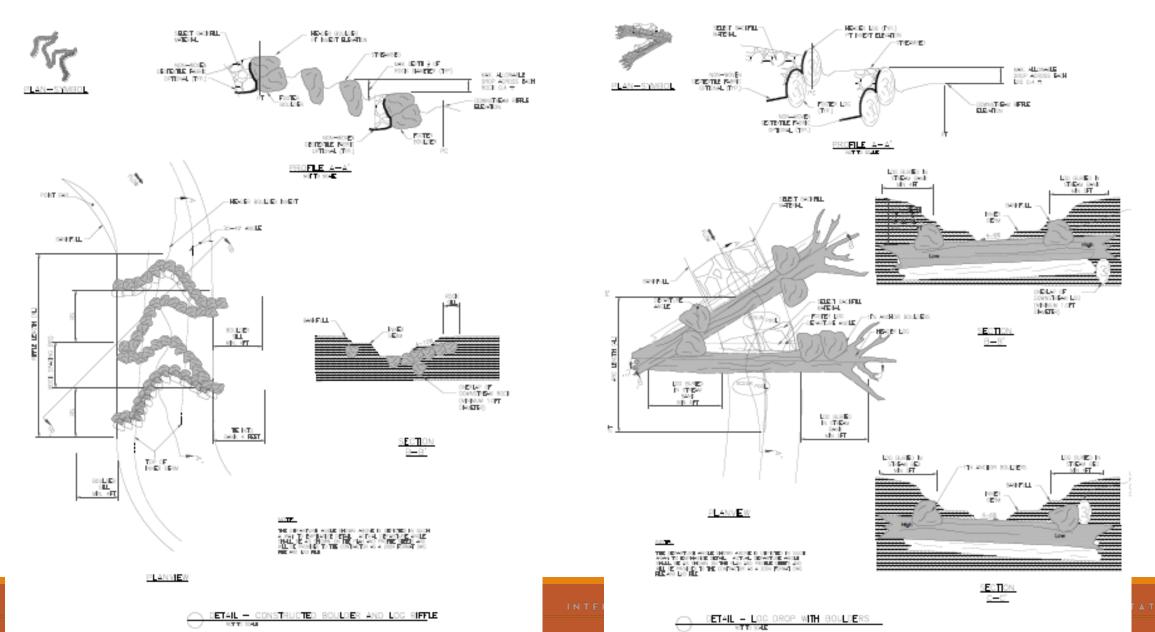
2-D Hydraulic Modeling 90% Design 1680 cfs


5 Web Window Help


_ 8 ×

HYDRO ENGINEERING SOULTIONS A DIVISION OF TRIMBLE

2-D Hydraulic Modeling 90% Design Bankfull Discharge



Stability and Enhancement Structures

PORTATION

Stability and Enhancement Structures

Questions?

Goodwyn, Mills, and Cawood, Inc. Justin N. Barrett, PE justin.barrett@gmcnetwork.com

