REINTEGRATING NATURE IN A DENSE URBAN ENVIRONMENT: RESTORATION OF WALLER CREEK (Austin, TX)

Dendy Lofton, PhD, Craig Taylor & Tim Dekker, PhD (*LimnoTech*); Mateo Scoggins (*City of Austin*)

National Conference on Ecosystem Restoration Coral Springs, FL 19 April 2016

Water Scientists Environment Engineers

Waller Creek (Austin, TX)

- Highly urbanized
- Catchment:
 - Area = 6 mi²
 - Length = 7 mi
- Project Area:
 - ~1.5 mi
 - UT-Austin to
 - Lady Bird Lake
 - ~ 97% developed
 - ~80-90% imperviousness

Waller Creek Flood Control Tunnel

http://www.austintexas.gov/department/waller-creek-tunnel

Effect on Event Flows: Hydrographs at Cesar Chavez Street

Range of storms for pre- and post- tunnel conditions

Effect on Event Flows: Hydrographs at Cesar Chavez Street

Hydrographs for a range of storms for pre- and post-tunnel conditions

Effects of Tunnel:

- "New" hydrology
- Removes ~ 28 acres
 100-yr floodplain
- Unique opportunity
 - Urban revitalization
 - Ecological restoration

City of Austin, Watershed Protection Dept.

Waller Creek Design Team

Interdisciplinary team led by Michael Van Valkenburgh and Associates in partnership with the City of Austin and the Waller Creek Conservancy

 Landscape Architects, Civil & Structural Engineers, Hydrologists, Ecologists, Urban Planners, Soil Scientists

LimnoTech's Primary Role

• Hydrology & Hydraulics

- Existing & post-tunnel conditions
- Water surface elevations with trail & park design elements
- Models utilized
 - HEC-HMS
 - HEC-RAS
- Stormwater Retrofit Opportunities

Stream Channel Design/Channel Form

- Bank and trail focus: high flows
- Fine channel focus: low flows

Phase 1: Waller Creek Framework Plan

Overarching Project Goals:

- Restore & reconnect the existing trail system
- Transform corridor into an inviting, safe public space with connected, but unique chain of parks
- Protect and enrich ecology

Block-by-block Framework

AQUATIC HABITATS

MAPKEY

PROJECT TYPE IN-CHANNEL FEATURES E = Existing (If not otherwise noted) Pool Features Rock/Gravel/Concrete Features Log/Woody Debris Features **Do Nothing** Deep Pool OO Proposed Bouider Cluster Existing Perm. Island (to protect) Proposed Emergent Log Preservation Cooling Pool Existing Gravel Bar (to protect) X Proposed Removal of Major Debris A Existing Riffle Wetland Bench Existing Exposed Bedrock (to maintain) M Proposed Riffle Restoration /// Proposed Cross Vane Existing Weir Reconstruction DDD Proposed Bank Lunker Proposed Weir

Phase 2: Creek Mouth Schematic Design

Lady Bird Lake to 4th Street

Pre-tunnel vs. Post-tunnel Floodplain

Design Alternative – Excavate Riparian Bench

Functional Lift Pyramid

5 BIOLOGY » Biodiversity and the life histories of aquatic and riparian life

PHYSICOCHEMICAL » Temperature and oxygen regulation; processing of organic matter and nutrients

GEOMORPHOLOGY »

Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

HYDRAULIC »

 \cap

Transport of water in the channel, on the floodplain, and through sediments

HYDROLOGY » Transport of water from the watershed to the channel

Flow regime regulates biodiversity and ecological function.

Harman et al. 2012.

-

Functional Lift Pyramid

5 BIOLOGY » Biodiversity and the life histories of aquatic and riparian life

PHYSICOCHEMICAL » Temperature and oxygen regulation; processing of organic matter and nutrients

GEOMORPHOLOGY »

Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

HYDRAULIC »

Transport of water in the channel, on the floodplain, and through sediments

HYDROLOGY » Transport of water from the watershed to the channel

Using ecological requirements to drive hydrology.

Harman et al. 2012.

Flow Regime Components & Ecological Functions

• Magnitude & Frequency

- Sediment transport
- Export nutrients, organics, detritus, waste products

Duration

- Influences persistence and coexistence
- Increases biodiversity; can limit non-native success

• Timing

- Life cycle cues (e.g., reproduction, egg hatching)
- Lateral & longitudinal species migration
- Rate of change or flashiness
 - Influences persistence and coexistence
 - Increases biodiversity; can limit non-native success ()

Flow Variability

AUSTIN'S EXISTING URBAN PARKS

WALLER CREEK = WALKABLE CITY

Questions?

Dendy D. Lofton, PhD dlofton@limno.com 651-219-4074