LINKING DOWNSCALED GLOBAL CLIMATE MODELS TO PLANNING LEVEL ECOSYSTEM MODELS

Eric White¹, Ehab Meselhe¹, Angelina Freeman², Mandy Green², David Lindquist², Alaina Grace¹, Denise Reed¹, and Yushi Wang¹

National Conference on Ecosystem Restoration 2016

²Louisiana Coastal Protection and Restoration Authority, Baton Rouge, LA

CPRA LeadMandy GreenAngelina FreemanDavid Lindquist

PM-TAC Team

Courtney Harris (VIMS)
John Callaway (USFCA)
Mike Waldon
Scott Hagen (LSU)
Wim Kimmerer (SFSU)

Water Institute Lead

Denise ReedEhab Meselhe

Modeling Team •Eric White (WI) Ann Hijuelos (WI) •Yushi Wang (WI) •Joao Pereira (WI) Alaina Grace (WI) •Scott Hemmerling (WI) Leland Moss (WI) •Alex McCorquodale (UNO) Stokka Brown (M&N) •Jonathan Wang (M&N) Mallory Rodrigue (CHF) Jenni Šchindler (CHF) •Jenneke Visser (ULL) Scott Duke-Sylvester (ULL) Robert Romaire (LSU) •Vadim Alymov (CECI) Michael Poff (CECI) Brady Couvillion (USGS) Craig Conzelmann (USGS)

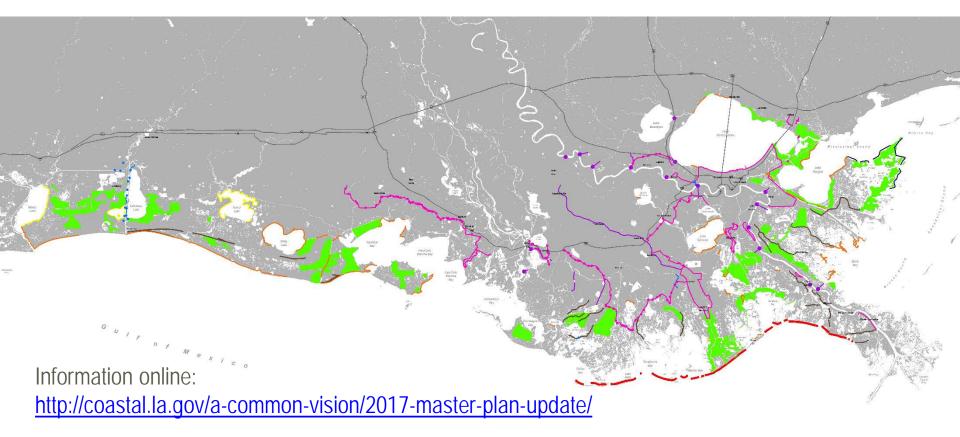
Hardin Waddle (USGS)

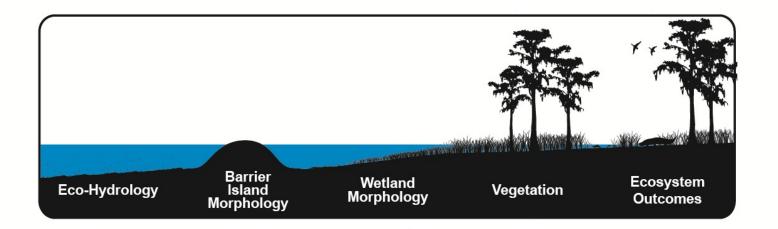
- •Kevin Suir (USGS)
- •David Johnson (RAND)
- •Kenneth Kuhn (RAND)
- •Jordan Fischbach (RAND)
- •Gordon Thomson (CB&I)
- •Zhifei Dong (CB&I)
- •Hugh Roberts (Arcadis)
- •Zach Cobell (Arcadis)
- •John Atkinson (Arcadis)
- Haihong Zhao (Arcadis)
- •Kim de Mutsert (GMU)
- •Kristy Lewis (GMU)

ACKNOWLEDGEMENTS

MASTER PLAN BACKGROUND

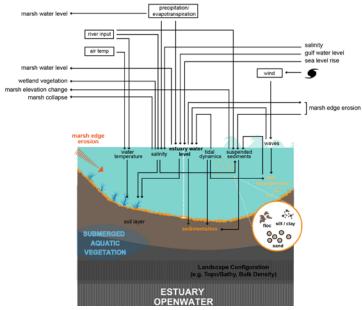
- Coastal land loss in Louisiana
 - 1900 sq km from 1932-2000
 - 56 sq km/year from 1984-2010

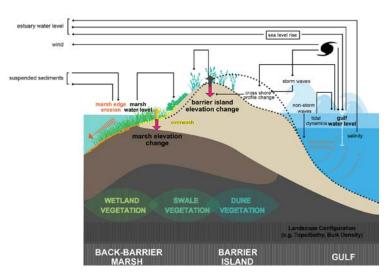

Coastal Louisiana Land Loss


MASTER PLAN BACKGROUND

50 year, \$50 billion comprehensive engineering plan
 Restoration & protection projects

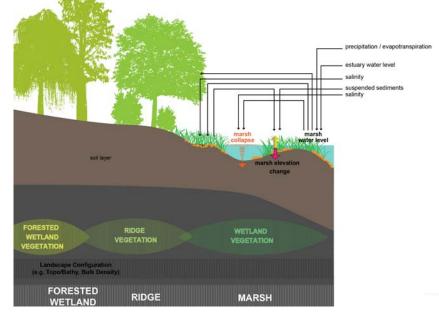
2017 MASTER PLAN INTEGRATED COMPARTMENT MODEL (ICM)





2017 MASTER PLAN INTEGRATED COMPARTMENT MODEL (ICM)

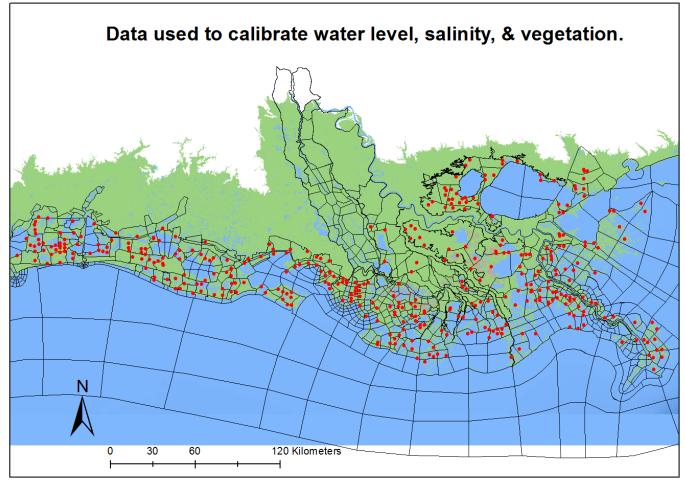
Estuary and Open Water Processes


- Hydrodynamics
- Water quality
- Sedimentation
- Bed resuspension

Wetland and Vegetation Processes

- Sediment distribution
- Wetland elevation change
- Wetland area change
- Marsh collapse
- Marsh edge erosion
- Storm effects
- Coastal vegetation

Barrier Island Processes


- Island elevation change
- Breaching
- Overwash / cross shore profile change
- Longshore transport
- Wave transformation
- Storm effects (SBEACH)
- Back-barrier marsh, dune and swale vegetation

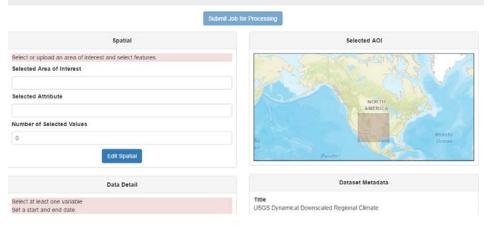
2017 MASTER PLAN INTEGRATED COMPARTMENT MODEL (ICM)

2017 Coastal Master Plan Integrated Compartment Model Coastwide Reference Monitoring System (CRMS)

Downscaled climate model data readily available online from USGS Geo Data Portal

- Easy to use web interface
- Download full datasets, or spatially averaged

Data is then easily manipulated

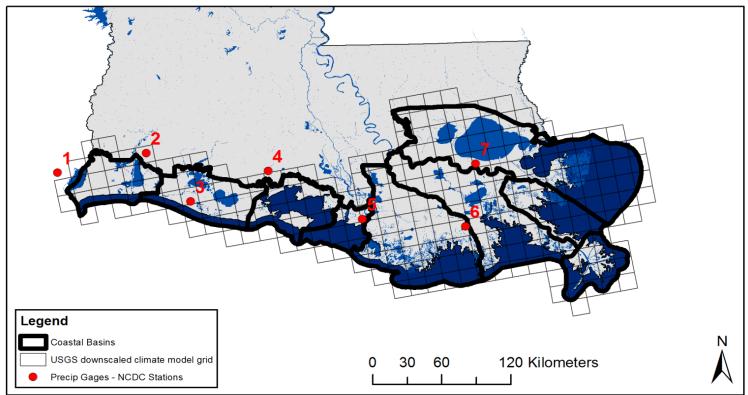

- standard NetCDF tools
- File Array Notation (FAN V 2.0)
- simple Python/NumPy scripts

Welcome to the USGS Geo Data Portal

This page is a catalog of the datasets that have been tested to work well for access with the Geo Data Portal (GDP). Select a dataset below to see more details and access it.

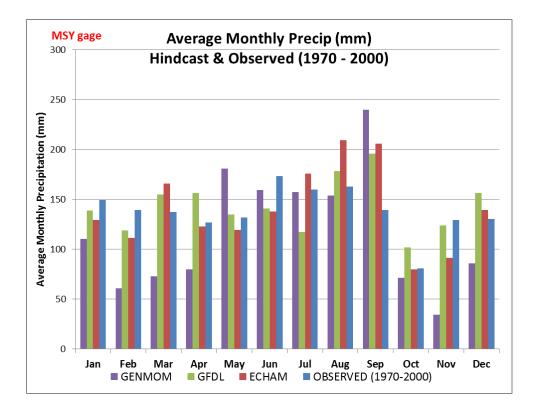
For more information about the GDP, please visit the documentation home here.

The increasing availability of downscaled climate projections and other large data products that summarize or predict climate and land use conditions, is making use of these data more common in research and management. Scientists and decision makers often need to construct ensembles and compare climate hindcasts and future projections for particular spatial areas. These tasks generally require an investigator to procure all datasets of therest en mase, integrate the various data formats and representations into commonly accessible and comparable formats, and then extract the subsets of the datasets that are actually of interest. This process can be challenging and time intensive due to data-transfer, storage, and(or) -processing limits, or unfamiliarity with methods of accessing climate and land use data. Data management for modeling and assessing the limpacts of future climate conditions is also becoming increasingly expensive due to the size of the datasets. The Geo Data Fortal addresses these limitations, making access to numerous climate datasets for particular areas of interest a simple and efficient task.



http://cida.usgs.gov/gdp/ www.unidata.ucar.edu/software/netcdf/fan_utils.html

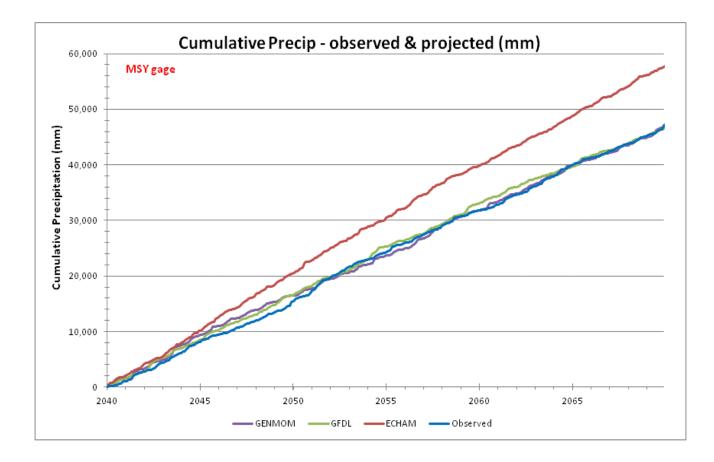
- USGS Dynamical Downscaled Daily Regional Climate V1.0 Eastern North America
- Multiple datasets available:
 - All use the same regional climate model (RegCM3)
 - All use same emissions scenario (A2 from IPCC AR 4)
 - Different general circulation models used:
 - USGS GENMOM
 - GFDL CM2.0
 - MPI ECHAM5
- Other downscaled datasets are available (e.g. statistically downscaled), but spatial and temporal coverages are not consistent across datasets



GCM used as boundary in RegCM3	Hindcast Period	Projected Period
GFDL	1970-1999	2040-2069
ECHAM	1970-1999	2020-2099
GENMOM	1980-1999	2020-2080

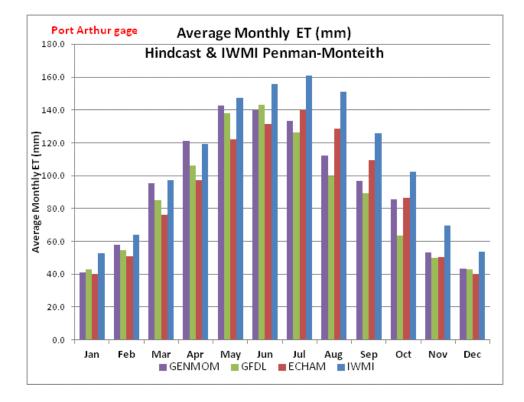
PRECIPITATION HINDCAST

Gage-to-hindcast comparsion completed at seven locations across model domain



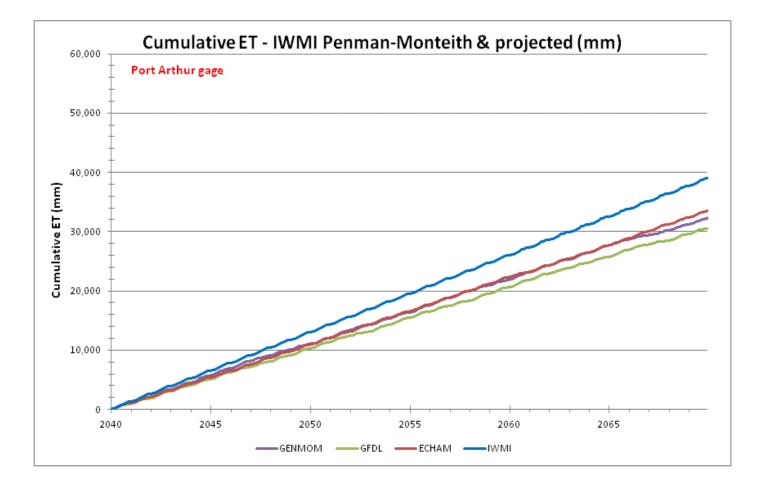
Percent difference between hindcast and observed rainfall at MSY

	1980-1999	1970-1999		
	GENMOM	GFDL	ECHAM	
Jan	Jan -30%		-14%	
Feb -58%		-15%	-20%	
Mar	-47%	13%	21%	
Apr -42%		23%	-3%	
May 45%		2%	-9%	
Jun	Jun -18%		-20%	
Jul	-2%	-26%	10%	
Aug	6%	10%	29%	
Sep	99%	41%	48%	
Oct	-11%	26%	-1%	
Nov	-72%	-4%	-29%	
Dec	-30%	20%	7%	

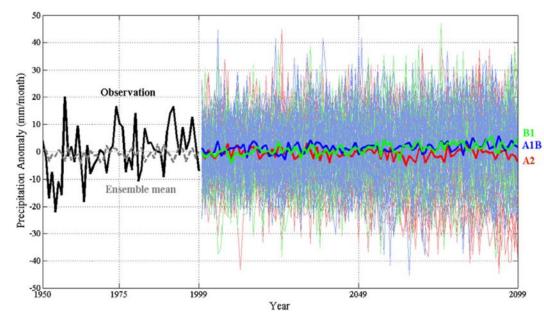

PRECIPITATION PROJECTION

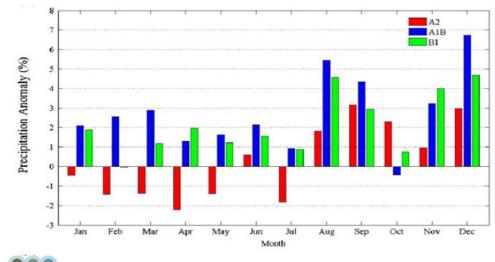
EVAPOTRANSPIRATION HINDCAST

PET-to-hindcast comparsion completed at seven locations across model domain



Percent difference between hindcast and observed rainfall at MSY


	1980-1999	1970-1999		
	GENMOM	GFDL	ECHAM	
Jan	-22%	-19%	-24%	
Feb	-10%	-15%	-21%	
Mar	-2%	-12%	-21%	
Apr	2%	-11%	-18%	
May	-3%	-6%	-17%	
Jun	-10%	-8%	-16%	
Jul	-17%	-21%	-13%	
Aug	-26%	-34%	-15%	
Sep	-23%	-29%	-13%	
Oct	-16%	-38%	-15%	
Nov	-23%	-29%	-28%	


EVAPOTRANSPIRATION PROJECTION

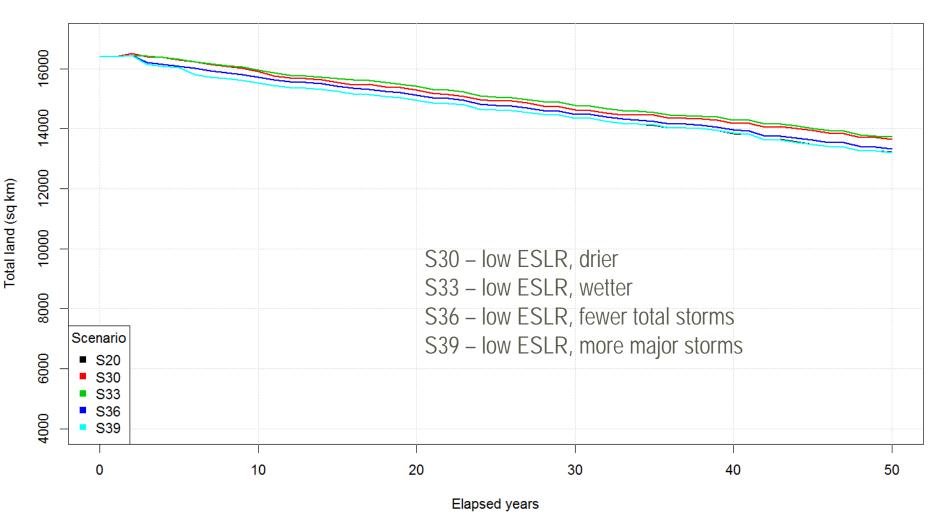
Projected precipitation anomalies (relative to 1950-1999 mean) in the Southeastern U.S. from ensemble downscaled datasets for three emission scenarios A2 = high emissions path A1B = middle emissions path B1 = low emissions path Images from Liu et al., 2012

2017 MASTER PLAN ENVIRONMENTAL SCENARIOS PLAUSIBLE RANGES

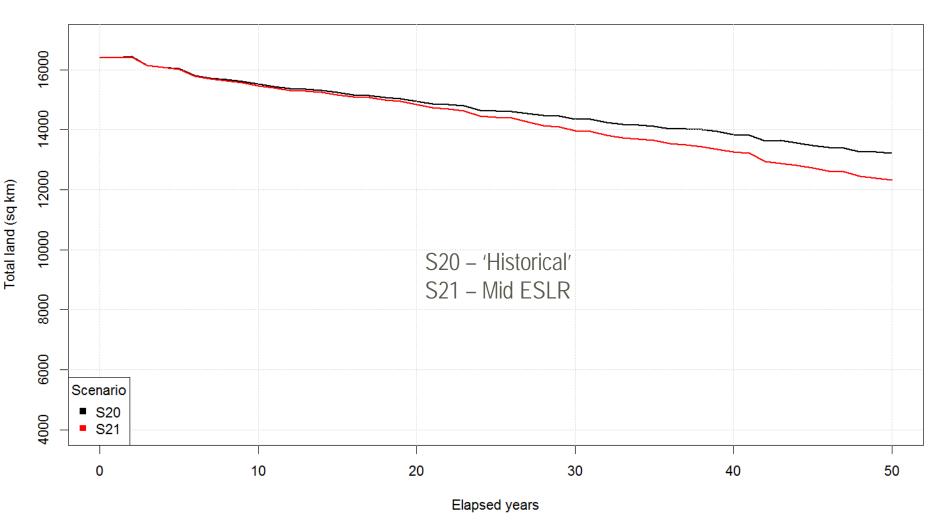
Variable	2012 Coastal Master Plan	2017 Coastal Master Plan	
Eustatic Sea Level Rise	0.16 to 0.65 m over 50 years	0.14 to 0.83 m over 50 years	
Subsidence	0 to 35 mm/yr; varies spatially	Same as 2012	
Precipitation	Historical monthly accumulations (+/- 1 SD), 1961-1990; varies spatially (8 points from gridded data field)	-5% to +14% of 50-yr observed cumulative	
Evapo- transpiration	Historical monthly average (+/-1 SD); varies spatially (10 points taken from existing data)	-30% to historic 50-yr observed	

RUN MATRIX EXAMPLE

Run ID	Precipitation	ET	ESLR (m/50 years)	Subsidence	Number of Storms	Number of Major Storms
S20 (base)	Historical (mid)	Historical (high)	0.22 (low)	20% of range (low)	23 (High)	11 (Low)
S21	Historical (mid)	Historical (high)	0.43 (mid)	20% of range (low)	23 (High)	11 (Low)
S22	Historical (mid)	Historical (high)	0.43 (mid)	50% of range (mid)	23 (High)	11 (Low)
S24	Historical (mid)	Historical (high)	0.83 (high)	50% of range (mid)	23 (High)	11 (Low)
S26	Historical (mid)	Historical (high)	0.22 (low)	50% of range (mid)	23 (High)	11 (Low)
S27	Historical (mid)	Historical (high)	0.22 (low)	75% of range (high)	23 (High)	11 (Low)
S30	GENMOM (low)	Historical (high)	0.22 (low)	20% of range (low)	23 (High)	11 (Low)
S33	ECHAM (high)	GENMOM (low)	0.22 (low)	20% of range (low)	23 (High)	11 (Low)
S36	Historical (mid)	Historical (high)	0.22 (low)	20% of range (low)	17 (Low)	8 (Low)
S39	Historical (mid)	Historical (high)	0.22 (low)	20% of range (low)	23 (High)	18 (High)
S62	GENMOM (low)	Historical (high)	0.43 (mid)	20% of range (low)	23 (High)	18 (High)
S65	GENMOM (low)	Historical (high)	0.43 (mid)	50% of range (mid)	23 (High)	18 (High)
S68	GENMOM (low)	Historical (high)	0.83 (high)	75% of range (high)	23 (High)	18 (High)
S76	Historical (mid)	Historical (high)	0.43 (mid)	75% of range (high)	23 (High)	11 (Low)
S77	Historical (mid)	Historical (high)	0.83 (high)	20% of range (low)	23 (High)	11 (Low)

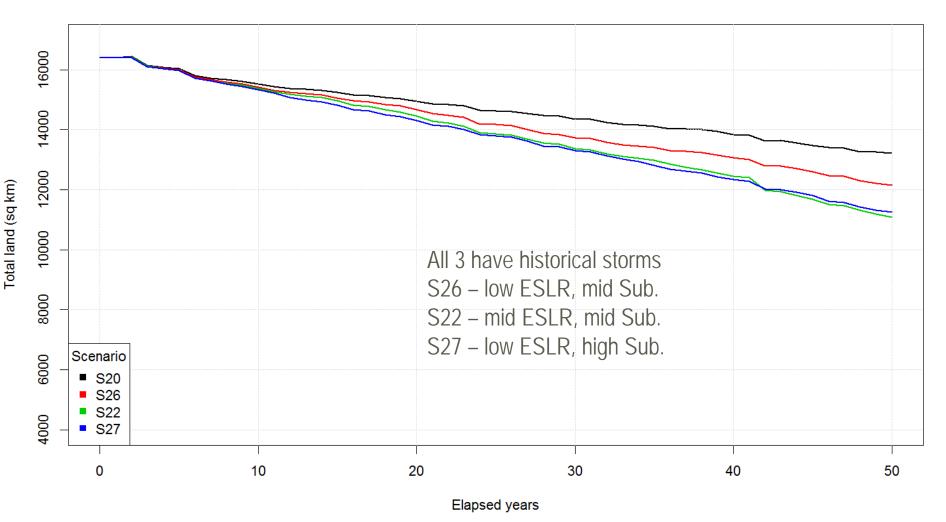

2017 MASTER PLAN ENVIRONMENTAL SCENARIOS

SENSITIVITY TEST – PRECIP, ET, STORMS



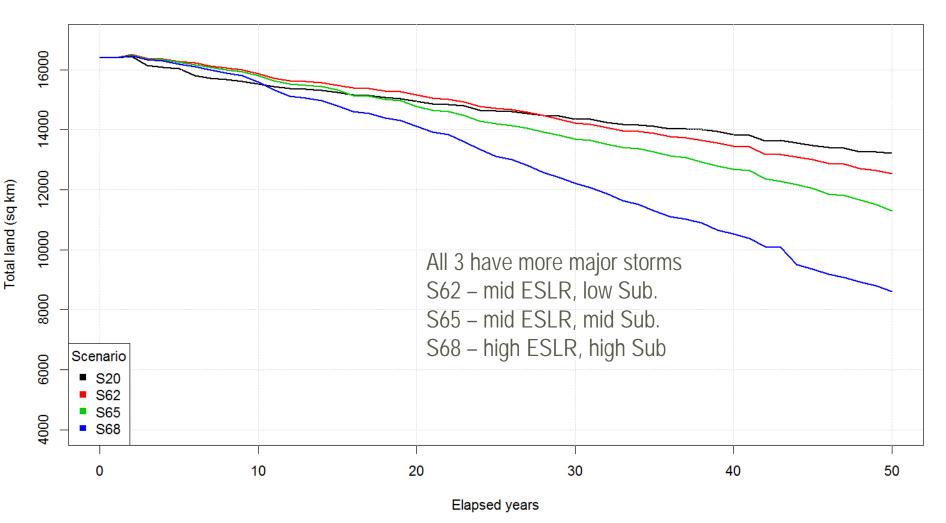
19

SENSITIVITY TEST – EUSTATIC SEA LEVEL RISE


Total land in Sq. Km across all Ecoregions for various scenarios

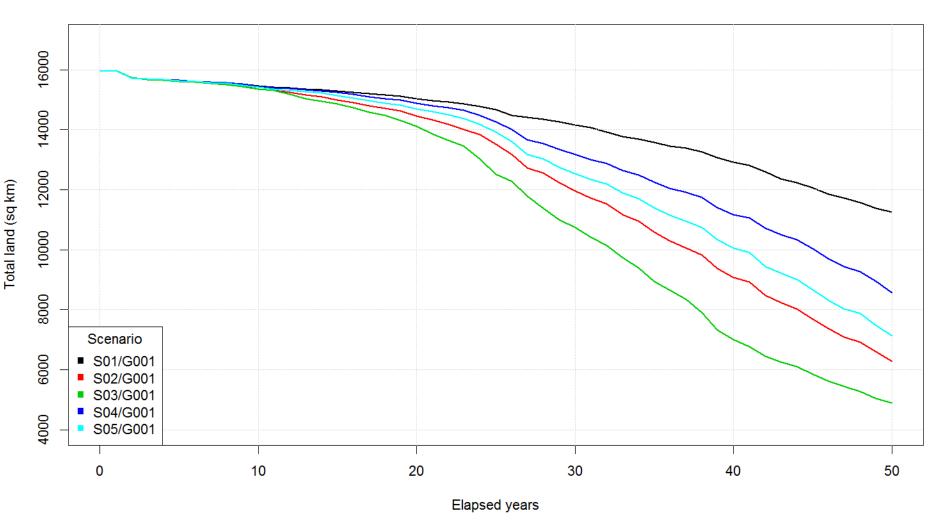
SENSITIVITY TEST – ESLR VS SUBSIDENCE

Total land in Sq. Km across all Ecoregions for various scenarios



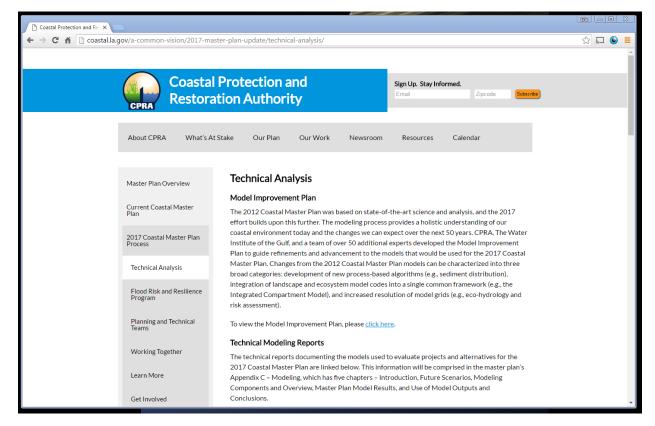
21

SENSITIVITY TEST – ESLR + SUBSIDENCE


Total land in Sq. Km across all Ecoregions for various scenarios

FUTURE WITHOUT ACTION 5 CANDIDATE SCENARIOS

Total land in Sq. Km across all Ecoregions for various scenarios



2017 MASTER PLAN ENVIRONMENTAL SCENARIOS

Scenario	Precip	ET	ESLR (m/50yr)	Subsidence	Overall Storm Frequency	Average Storm Intensity
	ICM Scenarios				CLARA Scenarios	
		2017	Coastal Mas	ter Plan		
Low	>Historical	<historical< td=""><td>0.43</td><td>20% of range</td><td>-28%</td><td>+10.0%</td></historical<>	0.43	20% of range	-28%	+10.0%
Medium	>Historical	Historical	0.63	20% of range	-14%	+12.5%
High	Historical	Historical	0.83	50% of range	0%	+15.0%
Compared to 2012 Coastal Master Plan						
Moderate	>Historical	Historical	0.27	20% of range	0%	+10.0%
Less Optimistic	Historical	>Historical	0.45	50% of range	+2.5%	+20.0%

Reports available on CPRA's website: <u>http://coastal.la.gov/a-</u> <u>common-vision/2017-master-plan-update/technical-analysis/</u>

CONCLUSIONS

- Downscaled climate data from GCM output are now readily available for use via the USGS Geo Data Portal
- Multiple model projections available
- Only one emissions pathway available
- Gridded rainfall, many times, is preferable for modeling purposes than gage data
- Future projections of rainfall, ET and other environmental drivers (temperature, etc) can be consistently developed as compared to generic assumptions related to historic records
- Provides a consistent methodology for comparison across scenarios

THANK YOU

Eric White ewhite@thewaterinstitute.org

301 NORTH MAIN STREET, SUITE 2000 BATON ROUGE, LA 70825

(225) 448-2813 WWW.THEWATERINSTITUTE.ORG

