Photo: UF/IFAS

Restored oyster reefs enhance estuarine ecosystem services by altering nearshore salinity

David Kaplan, Maitane Olabarrieta, Peter Frederick, and Arnoldo Valle-Levinson

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Globally: "Most Threatened" Marine Habitat

Globally: "Most Threatened" Marine Habitat

Globally: "Most Threatened" Marine Habitat

Florida Big Bend: Critical Losses

Collapse of an Oyster Reef

Collapse of an Oyster Reef

Collapse of an Oyster Reef

Oysters and Ecosystem Services

- Fisheries Support
- Biodiversity
- WQ Enhancement
- Storm Surge Protection...

Susan Stocker/Sun Sentinel/MCT

Source: Millenium Ecosystem Assessment, 2005.

<u>Hypothesis</u>: *Healthy* shore-parallel reefs detain fresh water, influencing salinity over extensive areas and serving as a "keystone" ecosystem service.

Where reefs are *degraded*, this service is lost or reduced...

Reef degradation \rightarrow decreased FW detention \rightarrow higher salinities \rightarrow increased predation \rightarrow high oyster mortality \rightarrow reef collapse?!

Frederick et al. 2014

- 3-D Regional Ocean Modeling System
- "Idealized" Suwannee
 Sound bathymetry
- Freshwater flow from Suwannee River: 5, 10, and 20 m³ s⁻¹
- <u>Salinity</u> = 25 PSU at tidal boundary
- M2+S2+K1+O1 tidal constituents

OYSTER REEF

y = 1.36x R² = 0.70

y = 1.36x $R^2 = 0.70$

1:1 line

Discharge = $10 \text{ m}^3 \text{ s}^{-1}$

BLUE: No Reef

<u>RED</u>: Reef2 - 50 m wide, MWL, 50 m inlets ("Current")

<u>Reef Geometry</u>: Presence, Length, Inlets, Surprises?

<u>Reef Geometry</u>: Presence, Length, Inlets, Surprises?

<u>Reef Geometry</u>: Presence, Length, Inlets, Surprises?

<u>Reef Geometry</u>: Height, Reef Width, Inlet Width

- Shore-parallel oyster reefs can detain fresh water and influence salinity over large areas...
- Driven by reef, inlet, & river geometry → use to guide restoration
- Intertidal vs. subtidal reefs?

Lone Cabbage: reef degradation begins in the southeast (far from FW inflows), likely initiated by reduced freshwater flow (Seavey et al. 2011)...

...this allows tidal currents to propagate through the Sound and get stuck behind reef, raising salinity and driving further degradation

$Q = 10 \text{ m}^3 \text{ s}^{-1}$...but flow is dynamic

Reef degradation \rightarrow decreased FW detention \rightarrow higher salinities \rightarrow increased predation \rightarrow high oyster mortality \rightarrow reef collapse?!

Frederick et al. 2014

Reef degradation \rightarrow decreased FW detention \rightarrow higher salinities \rightarrow increased predation \rightarrow high oyster mortality \rightarrow reef resilience!

Frederick et al. 2014

Thank you! Questions?

dkaplan@ufl.edu www.watershedecology.org