Monitoring and Analysis Designed to Assess and Inform Restoration

April 21st, 2016

Jimmy Webber USGS Virginia Water Science Center Richmond, VA *jwebber@usgs.gov*

Primary Collaborators:

Ken Hyer, VA Judy Denver, DE Mike Langland, PA JK Böhlke, Reston, VA Dean Hively, MD

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

• Non-tidal network monitoring location

How is the water quality of rivers and estuaries responding to restoration actions and changing land use?

Why?

00

C

0

O

00

0

00

0

00

00

0

800

00

0

0

http://cbrim.er.usgs.gov/index.html

Trend over Time

Nutrient or Sediment Load

Impetus for this process-level work

Non-tidal network monitoring location

2009 Executive Order tasked the USDA and USGS to partner in the Showcase Watersheds to describe the linkage between the implementation of conservation practices and waterquality improvements.

Impetus for this process-level work

 Non-tidal network monitoring location

2009 Executive Order tasked the USDA and USGS to partner in the Showcase Watersheds to describe the linkage the implementation of conservation practices and waterquality improvements.

Benefits Challenges We can isolate different basin High cost for such intensive monitoring types We can potentially resolve How to transfer knowledge of specific sources of sediment and individual basins to a regional nutrients scale? Enhanced spatial resolution can How to link water-quality reveal nutrient and sediment response to BMP "hot spots" implementation?

science for a changing world

Smith Creek, VA:

¹Landuse from ²Geology from Dicken NLCD 2011 and others (2005)

¹Landuse from ²Geology from Dicken NLCD 2011 and others (2005) ³Sinkholes from Hubbard (1983)

sampling event.

science for a changing world

Distribution

¹Landuse from ²Geology from Dicken NLCD 2011 and others (2005)

en ³Sinkholes from Hubbard (1983) ⁴Total nitrogen concentrations from May 2013 synoptic sampling event.

¹Landuse from NLCD 2011 samples during April 2013 synoptic sampling event.

science for a changing world

Nitrogen Sources: Conewago Creek, PA

Science for a changing world

¹Sources derived from county-based landuse estimates from 2002. Conewago Creek is an average of Dauphin and Lebanon Counties (PA), Difficult Run is based on Fairfax County (VA), Smith Creek is an average of Shenandoah and Rockingham Counties (VA), Upper Chester is an average of Kent and Queen Anne's Counties (MD).

Nitrogen Sources: Difficult Run, VA

Common delta N-15 values of nitrate sources:

Science for a changing world

¹Sources derived from county-based landuse estimates from 2002. Conewago Creek is an average of Dauphin and Lebanon Counties (PA), Difficult Run is based on Fairfax County (VA), Smith Creek is an average of Shenandoah and Rockingham Counties (VA), Upper Chester is an average of Kent and Queen Anne's Counties (MD).

Nitrogen Sources: Difficult Run, VA

Nitrogen Sources: Smith Creek, VA

Common delta N-15 values of nitrate sources:

¹Sources derived from county-based landuse estimates from 2002. Conewago Creek is an average of Dauphin and Lebanon Counties (PA), Difficult Run is based on Fairfax County (VA), Smith Creek is an average of Shenandoah and Rockingham Counties (VA), Upper Chester is an average of Kent and Queen Anne's Counties (MD).

Nitrogen Sources: Upper Chester, MD

Common delta N-15 values of nitrate sources:

Science for a changing world

¹Sources derived from county-based landuse estimates from 2002. Conewago Creek is an average of Dauphin and Lebanon Counties (PA), Difficult Run is based on Fairfax County (VA), Smith Creek is an average of Shenandoah and Rockingham Counties (VA), Upper Chester is an average of Kent and Queen Anne's Counties (MD).

Detecting Change Over Time

Increased Conservation Practices

Total number of fe Showcase Watersh	derally fu eds.	unded cons	servation p	oractices in	nplement	ed annuall	y within t	he
Watershed	2007	2008	2009	2010	2011	2012	2013	Total
Conewago Creek	131	50	110	90	122	86	93	682
Smith Creek	292	66	99	117	202	312	316	1,404
Upper Chester	179	106	103	189	193	264	79	1,113
				/s.				
			Increase	d Inputs?]			
United States Department of Agriculture Unservation Effects Access of Cropland in the Chesapeake Bay Region, 2003-06 to 2011				Manure Application Rate: 25% increase ¹				
				The lat				
				Com Ar	mercial I oplication 9% increa	P		
				App ar	propriate 1 oplication 9% decre	nitrogen 1 rate: ease ¹	578	

¹U.S. Department of Agriculture, Natural Resources Conservation Service, 2013, Impacts of conservation adoption on cultivated acres of cropland in the Chesapeake Bay region, 2003–06 to 2011: 113 p.

Detecting Change Over Time

Nitrate N, in milligrams per liter

science for a changing world

Monitoring and Analysis Designed to Assess and Inform Restoration

April 21st, 2016

Jimmy Webber USGS Virginia Water Science Center Richmond, VA *jwebber@usgs.gov*

Primary Collaborators:

Ken Hyer, VA Judy Denver, DE Mike Langland, PA JK Böhlke, Reston, VA Dean Hively, MD

Intensive water-quality sampling has resulted in a relatively strong understanding of:

Spatial Variability in Water Chemistry

Sources

Nitrogen

Manure in Smith Creek

Inorganic commercial fertilizer in the Upper Chester River

A mixture of sources that likely includes septic effluent in Difficult Run Observed empirical nitrate concentrations indicate that conditions are not yet improving

Implementation of conservation practices may be offset by increased nitrogen inputs.

These empirical data are critical for validating and improving various regional modeling tools such as the Chesapeake Bay Program's Watershed model, and the USGS SPARROW model.

Future Directions

Evaluate phosphorus sources and transport processes Understand the relation between BMP implementation and changes in water-quality Regionalize results to the Chesapeake Bay watershed

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.