RAINWATER KILLIFISH IN NEARSHORE EPIFAUNAL COMMUNITIES OF SOUTHERN BISCAYNE BAY: INDICATOR OF ECOSYSTEM CHANGE FOR SOUTH FLORIDA RESTORATION ASSESSMENTS

G.A. Liehr^{*1}, J.A. Browder, S.

Bellmund, D. Lirmann, J. Serafy,

T. L. Jackson

*1 corresponding author:ph.: +1 -850 -245 -8779, @: Gladys.Liehr@dep.state.fl.us

Siscayne Bay will be affected by structural and operational changes in the water management system planned under the Comprehensive Everglades Restoration Plan (CERP).

- As part of CERP RECOVER, the Integrated Biscayne Bay Ecosystem Assessment and Monitoring (IBBEAM) Team is monitoring and assessing nearshore flora and fauna in relation to salinity.
- Results are being used to help prepare ecological indicators and performance measures to assess effects of water management changes as they are implemented.

Rainwater killifish – Lucania parva

- Most numerically-dominant fish species in nearshore Biscayne Bay.
- Stress specialist: Highly tolerant of hypoxia, high temperature, high salinity and rapid salinity changes.
- Important prey to economically valuable species such as spotted seatrout and gray snapper.
- Potential indicator species?

Examine rainwater killifish abundance and condition in relation to salinity indices.

• Density

Biota

Salinity

- Condition factor

Mesohaline Index

• Hypersaline Index

Temporal and Spatial Pattern

Changes with Halohabitat

Captured with Quantile Regression

> IBBEAM Material & Methods

- Samples dry and wet season, Dry 2008-Dry 2015 at 44 sites.
- Salinity, temperature, DO, pH, and depth recorded.
- Fish collected with 1 m² throwtrap, thrown 3-times per site, 4 sweeps.
- Samples identified, measured, and weighed.
- Salinity data recorded at 15min intervals 365 days/yr, 24/7, at 17 nearby sites.

> IBBEAM Sampling Effort

Area	WQ			Faunal Sampling (3m2)		
	Site ID	Dry	Wet	Site ID	Dry	Wet
1	D6	86976	70651	1-2	10	8
2	D2	86975	70656	3-4	10	8
3	62	86247	70547	5-6	10	8
4	С8	70930	70655	7-8	10	8
5	С6	70944	70501	9-10	10	8
6	56	70648	70656	11-12	10	8
7	С4	70944	70654	13-14	10	8
8	С2	70944	66342	15	5	4
9	B8	87263	69885	16-17	10	8
10	B6	87264	70656	18-19	10	8
11	B4	86352	70656	20-26	35	28
12	40	86976	66022	27-29	15	12
13	28	86976	70656	30	5	4
14	22	84463	70656	31-32	10	8
15	A8	87262	68097	33-37	25	20
16	14	76256	67379	38-39	10	8
17	A6	85961	70656	40-44	25	20

Comparison of Salinities Measured

Rainwater killifish density per season/year

Rainwater killifish density and salinity of selected season/years:

Season/Year

Rainwater killifish Length-Weight relationship:

***theoretical ideal growth results in b=3

Rainwater Killifish Condition Factor

Rainwater Killifish Condition vs Halohabitat:

Normality Test (Kolmogorov-Smirnov) Failed (P < 0.050)

Kruskal-Wallis One Way Analysis of Variance on Ranks p = 0.047

Normality Test (Shapiro-Wilk) Passed (P = 0.332)

> Equal Variance Test: *Passed* (P = 0.906)

One Way Analysis of Variance P < 0.001

Quantile Regression

Density vs. Mesohaline Salinity Index Condition

Quantile	р
0.7	<0.0001
0.8	0.0006
0.9	0.0082

1.0

Mesohaline Index: Proportion of time with salinity in range 5 -18.

Quantile Regression

Density vs. Hyperhaline Salinity Index Condition

Hyperhaline Index: 1 – Proportiono of time when when salinity was greater than 38 ppt.

- Abundance and condition factor, a function of weight to length that reflects fish health, is influenced by salinity in the rainwater killifish.
- Quantile regression is an appropriate method to estimate functional relationships for all parts of a probability distribution.
- Rainwater killifish is a potential indicator of salinity change in Biscayne Bay.

Acknowledgment – Special Thanks

Robin Casioli **Crawford Drury** G. Harris M. Harangody C. Hermann **Rolando Santos** St. Schopmeyer B. Teare C. Vilmar Ian Zink

