THE ROLE OF LILA IN EVERGLADES RESTORATION:

HARNESSING THE POWER OF A PHYSICAL MODEL

Loxahatchee Impoundment Landscape Assessment (LILA)

Fred H. Sklar South Florida Water Management District

With

Eric Cline, Tom Dreschel, Rene Price, Pam Sullivan, Len Scinto, Mike Ross[,] Jennifer Rehage and Scot Hagerthey

April 20, 2016

A SCULPTED RIVER OF GRASS:

Presentation Outline

- 1. Why build LILA?
- 2. LILA design
- 3. The LILA Legacy

Loxahatchee Impoundment Landscape Assessment (LILA)

Fred H. Sklar

Section Administrator

Everglades System Assessment Section

South Florida Water Management District

> Presentation to the USACOE EAB and Chief

December 2, 2015

WHY BUILD LILA?

Example: Tree Islands in the Everglades

Left: a typical tree island of the Everglades in WCA-3. Right: A ghost tree island in WCA-2 with most of the trees having been replaced with herbaceous vegetation.

RECOVER Tree Island Mapping – SRS Results

Tree Islands of Shark River Slough: 1940 - 2004

(Minimum Mapping Unit ≥ 1 Hectare)

Year

WHY BUILD LILA?

- Tree Islands:
 - Why are 60% of the tree islands in the extant Everglades gone?
 - What are the hydrologic requirements for a landscape of tree islands?
 - How did these islands become P rich?
- Ridge and Slough:
 - Is the decline of slough habitat the cause of the 90% decline in wading birds?
 - What is the role of flow?
 - What hydroperiods prevent soil subsidence?

LILA Objective

Define the hydrologic regimes that will sustain and restore a healthy Everglades landscape with an emphasis on <u>tree islands</u>, <u>ridge and slough</u> <u>patterns</u> and <u>wading bird</u> communities

LILA DESIGN

LILA Design: Each Macrocosm (M1-M4) is 20 acres

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Construction of LILA Pump and Trash Rake

Construction of LILA 2002 – 2003

March 2003

Peat soil from the deep slough is used to construct tree islands.

One island in each macrocosm is constructed of limestone levee material

Cross-section of a macrocosm

LILA OPERATIONAL HYDROGRAPH

May 2004 Tree Planting I

3000 trees 3 days 30 people

Tree Planting II and III: March 2006 & March 2007

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

MIWP

The LILA Legacy: Tree Islands

Survival and growth of eight tree species along an hydrologic gradient on two tree island types

Mike Ross Susanna Stoffella Tom Dreschel

A Physical Investigation of Groundwater-Surface Water Interaction

Rene' Price, Pamela Sullivan Tom Dreschel

Determination of nutrient limitation on trees growing on tree islands

Mike Ross Suresh Subedi Eric Cline

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

The LILA Legacy: Role of flow on the distribution of sediments

Flow in the Everglades is <1 cm/sec However: CET = 2.5 – 3.5 cm/sec

Newly Planted LILA Tree Island / 1

Scot Hagerthey (SFWMD) and Kevin Black (PARTRAC, Ltd)

The LILA Legacy: Ridge and Slough

Ridge and Slough Transplant (RAST) Study Leonard Scinto Ryan Desliu Eric Cline

Crayfish population studies in LILA: Drought Response / Predator Release

Nate van Dorn Craig der Heiden Mark Cook

Tracking fish movement using passive integrated transponder (PIT) technology.

Jennifer Rehage, Mark Cook, ??

The LILA Science is Cutting Edge

Tracking wading bird prey: Jennifer Rehage

The LILA Budget is Modest:

Name	FUND	Amount
LILA Imagery	101	\$6,000
Veg Mgmt. (Contract Service)	101	\$7,500
Maintenance & Repair	101	\$25,000
COOP with LNWR	101	\$15,000
Ridge & Slough Science	220	\$170,000
Faunal Response to Hydrology	220	\$30,000
Pump Fuel	101	\$1,500
Tools and Equipment	101	\$6,000
Pump Electricity	101	\$8,800
Т	OTAL	\$269,800

The LILA Future is Bright

Study	Objective
Tree Islands	Nursery techniques for creation of tree islands.
Tree Islands	Determine the processes and hydrology that accounts for prevalence of tree island elevation loss
Ridge & Slough	Develop appropriate techniques for measuring elevation change in sawgrass and slough habitats.
Wildlife	Determine the effect of deep water refugia, such as canals, on native, exotic and invasive species of fish and invertebrates utilized by wading birds.
Wildlife	Hydrologic needs of small heron species
Resilience	Determine climate change tolerance and adaptation mechanisms in relation to hydrologic management

