Food Webs, Interaction Webs, and Monitoring: Using a Trophic Conceptual Model to Select Ecological Indicators

Joel Trexler¹, Laura A. Brandt², Frank J. Mazzotti³, and Bradley Strickland¹

¹Florida International University, North Miami, FL, USA ²U.S. Fish and Wildlife Service, Davie, FL, USA ³University of Florida, Davie, FL, USA

Everglades Restoration Science Strategy

Selecting Ecological Indicators

- Respond at an applicable scale?
- Feasible to implement?
- Sensitive to system drivers with predictable responses?
- Readily interpretable to general audience and scientifically defensible?
- Can a target be identified and deviations from it be documented and assessed?
- Are there situations where a positive trend is negative for restoration?
- Does the indicator have specificity?
- Does the indicator provide an early warning of ecological change?

Wading Birds and Monitoring Aquatic Fauna

- Aquatic fauna links environmental drivers controlled by management and wading birds
- Annual or semi-annual life cycles yield real-time responses to management

Wading Birds and Monitoring Aquatic Fauna

- ...and periphyton to fish and macroinvertebrate density dynamics
- SEM, field and lab mesocosm studies (citations available upon request)

Wading Birds and Monitoring Aquatic Fauna

- We have established link between wet-season prey biomass and prey biomass in drying pools.
- Dale Gawlik and Bryan Botson studied aquatic animals in dryseason pools.
- Prey biomass predicted by wetseason biomass, water recession rate, local microtopography.

Data for Assessment Six Performance Measures

- Four species selected as Performance Measures to represent different life histories related to effects of marsh drying
- Total fish as a measure of fish availability for higher trophic levels
- Frequency of non-native fish species

Hydrological PMs

- Recover slowly (years), effected by local drying - bluefin killifish
- Recover quickly (months), decline as site remains flooded – flagfish
- Recover quickly (months), effected by local and regional drying – eastern mosquitofish
- Not effected by short drying events, average depth past 6 months, regional drying – Everglades crayfish

Examples of PMs

Assessing Impacts of Hydrological Management

models to predict fish density

• Identify goals for hydrological management

– Baseline period: Jan 1993 – Nov 1999

- Assessment period: Dec 1999 present
- Can we detect an effect of hydrological operations on biological indicators beyond rainfall-driven hydrological variation?
 - > Residual effects = (Old operating + rainfall) (New operating + rainfall)

Steps for Assessment

- Select Performance Measures and report temporal pattern 1995 – present
- Model water depth from rainfall during baseline period (1993 1999)

- Project water depths for assessment period (late 99 - present) under old operating rules
- Model PM from hydrology
- Project PM during assessment period from for projected hydrology
- Compare projected PM values to observed

Shark River Slough Plot 6C

Criteria for Red Stoplights 🔴

- Type A: one year at least three standard errors above/below limits of objective interval
- Type B: two out of three consecutive years at least two standard errors above/below limits of objective interval
- Type C: four out of five consecutive years with at least 1.5 standard errors above/below limits of objective interval

Bluefish Killifish Fish

Model Prediction (Observed Hydrology)
Model Prediction (Projected Hydrology)
End of baseline period

Observed

Annual Stoplight Assessments

Shark River Slough

Alligators and Monitoring Aquatic Fauna?

Periphyton Infauna

Omnivores

Herbivores

Diatoms + Green Algae

Periphyton Phosphorus

Infauna

Periphyton

Biomass

Time Since

Flooding

- Midge larvae, amphipods, nematods live inside periphyton mats
- SEM preferred model includes bottom-up and top-down effect

Planorbid snails

- Ramshorn snails are most abundant in the Everglades.
- Density does not varies along nutrient gradients though algal quality does
- Hypothesis that predation risk and food resources balance near and far from canals
- Tested with reciprocal transplant of periphyton

Summary and Conclusions

- The CERP Monitoring and Assessment Plan links management actions to societal values
- We illustrated MAP implementation and Performance Measure selection and application for the trophic hypothesis for wading birds.
- Recovery and sustenance of healthy alligator populations is a societal value captured in the CERP Monitoring and Assessment Plan.
- A 'trophic hypothesis' for alligators reveals key positive feedbacks to their prey by their role as ecosystem engineers.
- Positive feedbacks may mask trophic linkages observable in descriptive data.

Acknowledgments http://www.trexlerlab.com/

- Cooperative Agreements from the Everglades National Park and Jeff Kline
- CERP MAP program contract from SFWMD and Jana Newman and Andy Gottlieb
- CERP MAP program contract from USACOE and Melissa Nasuti, April Patterson, Andy Loschiavo
- Thanks to Bob Doren (NPS retired) for including us in the Restoration Indicator Program

http://www.trexlerlab.com/

- Trexler, J. C., and C. W. Goss. 2009. Aquatic fauna as indicators for Everglades restoration: Applying dynamic targets in assessments. Ecological Indicators 9S:S108-S119.
- Liston, S. E., S. Newman, and J. C. Trexler. 2008. Macroinvertebrate community response to eutrophication in an oligotrophic wetland: An in situ mesocosm experiment. Wetlands 28:686-694
- Chick, J. H., P. Geddes, and J. C. Trexler. 2008. Periphyton mat structure mediates trophic interactions in a subtropical wetland. Wetlands 28:378– 389
- Sargeant, B. L., E. E. Gaiser, and J. C. Trexler. 2011. Indirect and direct controls of macroinvertebrates and small fish by abiotic factors and trophic interactions in the Florida Everglades. Freshwater Biology 56:2334–2346
- Ruehl, C. B., and J. C. Trexler. 2015. Reciprocal transplant reveals trade-off of resource quality and predation risk in the field. Oecologia 179:117-127.
- Trexler, J. C., E. E. Gaiser, J. S. Kominoski, and J. Sanchez. 2015. The role of periphyton mats in consumer community structure and function in calcareous wetlands: Lessons from the Everglades. In: J. A. Entry, A. D. Gottlieb, K. Jayachandrahan and A. Ogram, eds. Microbiology of the Everglades Ecosystem, Science Publishers, CRC Press, pp 155-179.