RESTORATION TARGETS FOR JUVENILE SPORTFISH IN FLORIDA BAY

Christopher Kelble, Joan Browder, Patrick Pitts, Lindsey Visser

• Why sportfish are important?

Methodology

• Setting Habitat Suitability Targets

• Informing & Assessing Restoration

• Future Directions

- Generates ~US \$880 Million per annum and >6,000 jobs (Fedler et al. 2009)
- Spotted Seatrout (C. nebulosus) 2nd most commonly caught fish in Florida Bay
- *C. nebulosus* spend entire life history in natal Bay

Methodology

- May-Oct
- Monthly
- Otter trawls
- Seagrass, T, S
- Stratified Random Sampling
- Optimized with power analysis

Sampling: 2004-present, 1994-2001, 1984-1985

10 yr Time Series

dP

Salinity Effect

dP

Body Condition

Laboratory studies (Wuenschel et al. 2004)

Spotted Seatrout larvae have increased mortality at salinities <5 or >50. Respiration rates decrease at salinities >40 and temperatures ≥30°C

Seagrass Relationship

Seagrass Relationship

Lower salinities and higher seagrass percent cover correspond to higher seatrout Frequency of Occurrence.

Sportfish Models

RESTORATION TARGET

CEPP Evaluation

Climate Change Predictions

More purple = habitat improves with climate change

More Orange = habitat declines with climate change

Spotted Seatrout

Goldspotted Killifish

Rainwater Killifish

Mojarra

Pinfish

Assessing Impacts

Little Madiera salinity lower by 1.50 to 1.76

Preliminary analysis showed no significant difference in juvenile spotted seatrout

Next Steps

 Develop and get Performance Measure adopted by CERP in 2016

• Determine the full impacts of C-111 via BACIP

 Investigate interactive impact of climate change and CERP given 30yr time horizon

 Incorporate anticipated changes in seagrass distributions and water quality

- Results support both hypotheses related to juvenile sportfish and laboratory experiments on juvenile spotted seatrout
- Already being used to both assess CERP impacts and evaluate the effects of the next increment of CERP
 - It was also key to the ecosystem services valuation study conducted for CEPP
- Models have proven effective, but show confounding results that need to be rectified by more advanced ecosystem model(s)

Acknowledgements

- Statistical & Modeling Assistance
 - Kelly Kearney, Lindsey Visser, Patrick Pitts, Betty Huss, Allyn Powell, Don Deis, Frank Marshall
- Field Assistance
 - Lindsey Visser, Joseph Contillo, Timothy Cook, Michelle Harangoby, Geoffrey Cook, Mike Lacroix, Patrick Cope
- Lab Assistance
 - Betty Huss, Laura Petteway, Robin Cascioli, Lloyd Moore, Timothy Cook, Tom Jackson

