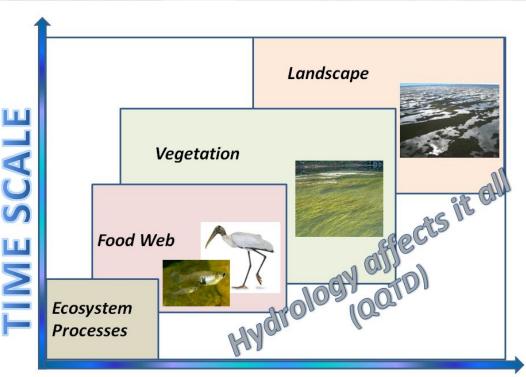
SYSTEM-WIDE SCIENCE COORDINATION AND REPORTING

April Patterson, Project Manager U.S. Army Corps of Engineers

National Conference on Ecosystem Restoration April 20, 2016

Overview

- REstoration COordination and VERification (RECOVER) Science Organization
- Regions and Science Missions
 - Planning
 - Evaluation
 - Assessment
- Coordination
- Reporting



BUILDING STRONG

Comprehensive Everglades Restoration Plan Vision and Goals

Vision

- Get the Water Right (Quality, Quantity, Timing, and Distribution)
- Good Ecosystem Response, Restoration Success
- Goals
 - Enhance Ecologic
 Values
 - Enhance Economic
 Values and Social Well
 Being

SPATIAL SCALE

RECOVER Mission

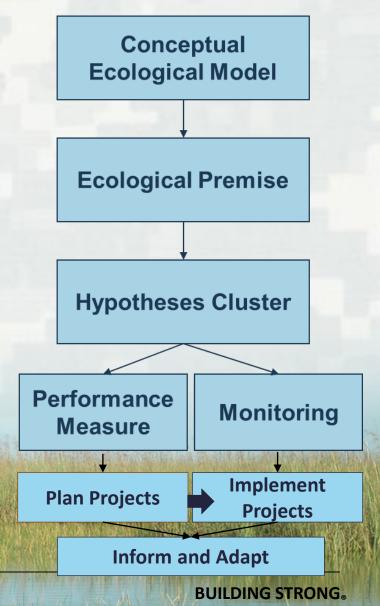
REstoration COordination and VERification

- Science Behind CERP
 - Planning (System-wide)
 - ► Evaluation
 - ► Assessment
- Communicates and coordinates the results of these evaluations and assessments
- Scientific support for decision-making

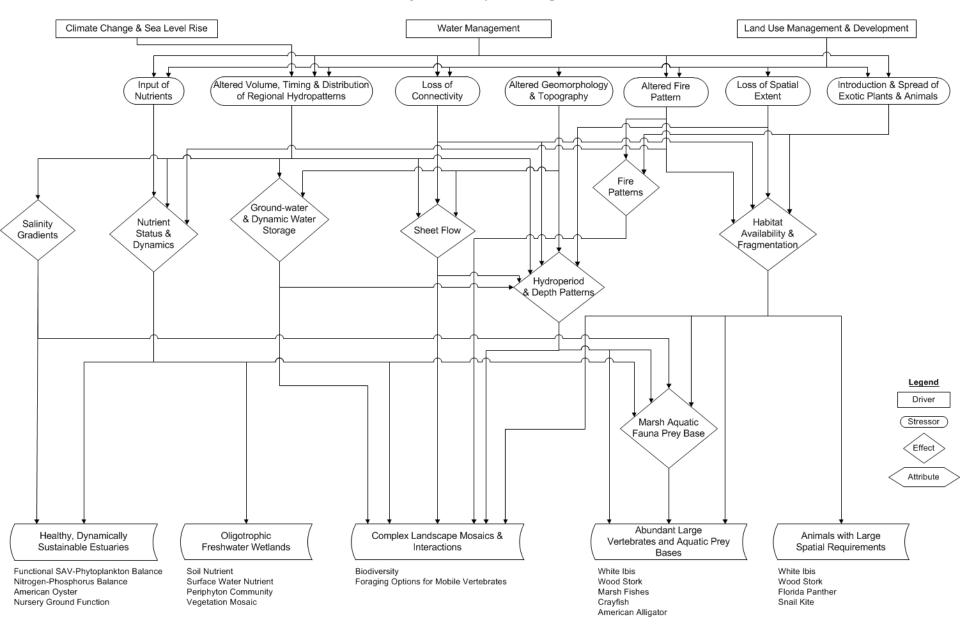
"Science will be the foundation of restoration." – 2003 Programmatic Regulations

Interagency and Interdisciplinary Scientific Coordination

- Multi-agency team of scientists, modelers, planners and resource specialists
- Interagency Teams collaborate on all projects and all levels of coordination
- RECOVER Leadership Group 10 Agencies and 2 Tribes
- RECOVER Executive Committee, Regional Coordinators, Task Leads, Principal Investigators
- Supports Science Coordination Group (Task Force)
- Science Used in Independent Science Review (CISRERP)
- Science used in decision making


Coordination and Collaboration

- Supports Science Coordination Group's Ecological Indicator Report - Provide Monitoring and reporting through Pl's
- Independent Science Review (CISRERP)
- Works closely with and leverages other SF science and monitoring such as LTER, USGS, ENP, SFWMD and counties


Science Framework

- The Science Behind CERP
- The Monitoring and Assessment Plan (MAP)
 - Organized around Conceptual Ecological Models (CEM's)
 - Hypothesis Clusters
 - Indicator Species
 - Performance Measures
- Adaptive Management
 - Feedback Loop

Total System CEM

Total System Conceptual Ecological Model

RECOVER Regions

Organized by geographic area

- Lake Okeechobee
- Northern Estuaries
- Greater Everglades
- Southern Coastal Systems

CERP System-wide Monitoring

Monitoring and Assessment Plan (MAP)

Holistic description of the status of the Everglades ecosystem

~35 monitoring components

- Ecological, biological, water quality
- Linked to Performance Measures
- Within and cross-regional monitoring
- Leverages monitoring from other agencies
- Heart of the CERP Adaptive Management (AM) Program
- Summary of ecosystem changes as they relate to CERP goals and objectives
- Identification of major unanticipated findings

BUILDING STRONG®

What is the System Status Report?

An in-depth, system-wide assessment of monitoring data (physical, chemical and biological) from:

- RECOVER Monitoring & Assessment Plan (MAP)
- Historical sources
- Non-MAP sources

System Status Report

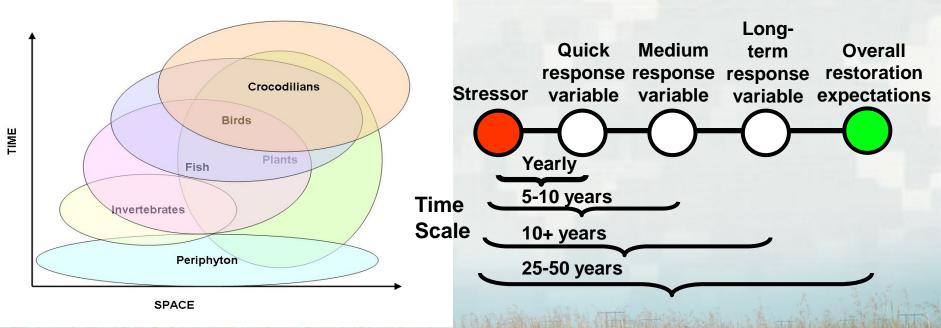
- Synthesize and assess technical data of the Everglades and South Florida Ecosystem
 - System-wide hypotheses
 - Performance Measures
 - Interim Goals
 - CERP goals and objectives
- Status, condition, and trends of hydrological, water quality, and biological data critical to Everglades restoration
- Identify unanticipated results and potential remedies for consideration
- Adaptive Management Feedback
 - Update science (MAP, CEMs, Performance Measures, Tools)
 - Inform Project planning, design, operations, CERP schedule
 Used in decision-making

Why Develop the SSR?

- To establish pre-CERP reference conditions
- To determine whether the goals and objectives of CERP are being met
- To provide the best available science to decision-makers (through adaptive management) in order to improve restoration success

What are the implications for CERP?

- Provides scientific information on the ecosystem's response to CERP implementation
- Reaffirms key CERP hypotheses
- Provides scientific information throughout project planning, design, construction, operation, and maintenance
- Reduces risk and uncertainty
- Contributes to CERP reports including the 5-Year Report to Congress
- Allows managers and decision-makers to use the best available science during implementation of the CERP



Importance of System-wide Science

Broad Spatial & Temporal Scales

Recognizing that the ecosystem responds over difference scales...

Ecosystem Response

15

... creates opportunity to best leverage monitoring efforts

BUILDING STRONG®

Questions

