

#### Building Coastal Resilience In The Gulf Of Mexico: Decision Support Tools For Assessing The Costs And Effectiveness Of Ecosystem Restoration



Protecting nature. Preserving life.\*\*



*Christine Shepard,* Michael W. Beck, Zach Ferdana, Laura Flessner, Borja Reguero

### Resilience Strategies for Coasts at Risk

#### www.coastalresilience.org



#### **Coastal Resilience**

### Approach



### **Risk Reduction Involves Multiple Solutions**



# How do we identify where naturebased solutions make sense?







Dependent upon:

Risk reduction

•Cost/benefit

•Feasibility

### Recommended Approach for Assessing Coastal Protection Value: Expected Damage Function



# Partnership with Swiss Re

Where are nature-based defenses cost effective? <u>Aims</u>

- Work with worlds 2<sup>nd</sup> largest re-insurer
- Public cost effectiveness model that includes nature
- Add ecosystem (co)benefits



Reguero, Bresch, Beck et al. 2015. Coastal Eng. Proc. & in review Scientific Reports





#### The regional domain: The Gulf Coast of US

>3,200 Nodes (Zipcodes) to register Hazards and Damages

# **Damages Curves**

Damage curves (water depth) for different types of buildings Aggregated into 17 types from the full USACE-FEMA catalogue Wind Damage curve used from Climada default wind model



#### **Effects of Economic Growth & Climate Change on Losses**



# **Risk Reduction Measures**

| Measure                        | Criteria                                                                                                     |
|--------------------------------|--------------------------------------------------------------------------------------------------------------|
| Wetland Restoration            | 6 Counties with the highest losses in assets where at least 25 miles of salt marsh could be restored by bay. |
| Wetland Conservation           | 125 miles of wetlands protected                                                                              |
| Local Levees Priority          | 6 ft "hills" built to protect 532,000 existing houses on<br>the 6 counties that experience most damages      |
| Sandbags                       | Used in 2.9 million houses for all Cat 3 hurricanes across all counties in the study area.                   |
| Local Floodwalls               | Concrete blocks (4 ft) built to protect 1.9 million houses across all counties                               |
| Levees                         | 20 ft levees constructed around Houma & New Orleans,<br>LA - 340 miles.                                      |
| Barrier Island<br>Restoration  | All Mississippi coastal counties                                                                             |
| <b>Oyster Reef Restoration</b> | 1000 miles restored in all counties with high suitability                                                    |
| Beach Nourishment              | All Coastal Counties in Texas.                                                                               |
| Home Elevation                 | Elevate 481,841 existing houses by 8ft in 6 counties that experience the most damages                        |

#### SCENARIO 1 (CONSERVATIVE)

| MEASURE                    | % Wave<br>Reduction | % Surge<br>Reduction | hazard<br>elevation<br>cutoff (m) | type cutoff |
|----------------------------|---------------------|----------------------|-----------------------------------|-------------|
| Local levees - homes       | 20                  | 0                    | 1.8                               | overtopping |
| Levees                     | 60                  | 0                    | 6                                 | frontline   |
| Sandbags                   | 0                   | 0                    | 0.6                               | overtopping |
| Beach Nourishment          | 75                  | 0                    | 0                                 |             |
| Local Floodwalls           | 0                   | 0                    | 1.2                               | overtopping |
| Home Elevation             | 0                   | 0                    | 3                                 | elevation   |
| Wetland restoration        | 30                  | 10                   | 0                                 |             |
| Barrier island restoration | 20                  | 5                    | 0                                 |             |
| Oyster reef restoration    | 20                  | 0                    | 0                                 |             |

dz = Hazard + subsidence - Zi

 $\mathsf{D}(i) = \mathsf{MDD}(dz) * \mathsf{PAA}(dz)$ 



### **Oyster Reef Restoration**

1050 miles of Oyster Reefs restored in 24 counties with high restoration suitability see Restoration Explorer in www.maps.coastalresilience.org



Penetration varied 15% to 50%

Unit Cost of Measure :



\$1,500,000/mile of protected shoreline

Total Cost : \$1.6 Billion

**Co-Benefits of Oyster Reefs to Fisheries:** 

\$23,241/ mile of reef restored / year.

### **Economics of Coastal Adaptation App**



#### maps.coastalresilience.org/gulfmex

### **Economics of Coastal Adaptation App**



#### maps.coastalresilience.org/gulfmex

#### Comparison of the costs and benefits of Risk Reduction measures



The width of each bar represents damages averted (billions of dollars). The red dotted line indicates a benefit to cost ratio of 1. Measures above the line are cost-effective.

| MEASURE                    | CRITERIA                                                                                                    |
|----------------------------|-------------------------------------------------------------------------------------------------------------|
| Sandbags                   | Used in 2.9 million houses for all category 3 hurricanes across all counties in the study area              |
| 2 Wetland Restoration      | 6 counties with the highest losses in assets where at least 25 miles of salt marsh could be restored by bay |
| Oyster Reef Restoration    | 1,000 miles restored in all counties with high suitability                                                  |
| Barrier Island Restoration | All Mississippi coastal counties                                                                            |
| Wetland Conservation       | 125 miles of wetlands protected                                                                             |
| Beach Nourishment<br>(     | All coastal counties in Florida (East Coast) and Texas (West Coast)                                         |
| Local Levees Priority      | 6ft "hills" built to protect 532,000 existing houses on the 6<br>counties that experience most damages      |
| Home Elevation             | Elevate 481,841 existing houses by 8ft in 6 counties that<br>experience the most damages                    |
| O Shoreline Levees         | 20ft levees constructed around Hourna & New Orleans, LA -<br>340 miles                                      |

# Science and tools to inform comprehensive restoration of the Gulf of Mexico



### Look to existing plans





#### All priorities



All funded projects

# FEMA's Community Rating System and flood risk reduction



### Open space and flood risk reduction



| Variable                                 | Mean     | Std. Dev.  | Min     | Max         |
|------------------------------------------|----------|------------|---------|-------------|
| Damage (natural log)                     | 1.74     | 3.94       | 0       | 17.60       |
| Damage (untransformed)                   | 60422.73 | 1165714.00 | 0       | 43800000.00 |
| Percent SFHA                             | 32.59    | 28.73      | 0       | 100.00      |
| Sum of number of days with >= 1" of rain | 75.01    | 17.64      | 22.42   | 98.96       |
| Average Number of NFIP policies          | 685.70   | 2851.02    | 1       | 56989.75    |
| Median Household Income                  | 48081.14 | 14140.78   | 1397.73 | 138218.40   |
| Mean Slope                               | 0.91     | 0.78       | 0.01    | 4.46        |
| Soil Hydraulic Conductivity              | 42.57    | 33.03      | 0.4     | 108.73      |
| Percent High-Intensity Development       | 0.88     | 2.65       | 0       | 30.13       |
| Percent Low-Intensity Development        | 4.87     | 6.79       | 0       | 52.06       |
| Agriculture                              | 25.48    | 24.46      | 0.0004  | 97.03       |
| Forest                                   | 17.00    | 16.18      | 0.0001  | 73.30       |
| Grassland                                | 4.50     | 4.55       | 0.0013  | 61.58       |
| High-Intensity Developed                 | 0.88     | 2.65       | 0.0004  | 30.13       |
| Medium Intensity Developed               | 1.92     | 5.03       | 0.0007  | 44.98       |
| Low-Intensity Developed                  | 4.38     | 6.52       | 0.0006  | 52.06       |
| Open-Space Developed                     | 2.61     | 4.17       | 0.0006  | 40.66       |
| Estuarine                                | 7.13     | 15.46      | 0.0001  | 84.95       |
| Palustrine                               | 23.21    | 20.09      | 0.0062  | 99.52       |
| Scrub/Shrub                              | 11.94    | 11.58      | 0.001   | 79.49       |
| Area (HA)                                | 12927.19 | 24829.70   | 1558.71 | 923835.70   |

| Variable                            | Measure                                                                                                                                                          | Mean     | Std. Dev. | Min     | Max      |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|---------|----------|
| Mean Patch Size (Area)              | Ave. patch size                                                                                                                                                  | 484.0842 | 1428.105  | 0.3225  | 19516.77 |
| Number Patches (NP)                 | Total number of patches                                                                                                                                          | 171.4789 | 261.6628  | 1       | 3680     |
| Patch Density (PD)                  | NP/watershed area                                                                                                                                                | 1.448596 | 1.404827  | 0.0051  | 8.125    |
| Percent Natural (PLAND)             | % watershed natural cover                                                                                                                                        | 62.68106 | 27.59358  | 0.0123  | 99.9787  |
| Largest Patch Index (LPI)           | % largest patch                                                                                                                                                  | 53.59356 | 32.25023  | 0.0038  | 99.9787  |
| Radius of Gyration (GYRATE)         | Avg. distance between patch and centroid                                                                                                                         | 296.1694 | 643.442   | 24.2938 | 7622.561 |
| Euclidian Nearest Neighbor<br>(ENN) | Shortest distance btw. Patches.                                                                                                                                  | 120.4184 | 71.15026  | 60      | 2131.3   |
| Contiguity (CONTIG)                 | Avg. contiguity value for the cells<br>in a patch – 1 / sum of the<br>template values - 1                                                                        | 0.366976 | 0.125093  | 0.1299  | 0.9953   |
| Cohesion (COHESION)                 | 1- the sum of patch<br>perimeter/sum of patch perimeter<br>x sq. rt. of patch area/ 1 - 1 over<br>the sq. rt. of total number of cells<br>in the landscape x 100 | 98.92701 | 2.787928  | 56.5664 | 100      |

| Control Variable                         | Direction of Impact |
|------------------------------------------|---------------------|
| Percent SFHA                             | +                   |
| Sum of number of days with >= 1" of rain | +                   |
| Average Number of NFIP policies          | +                   |
| Median Household Income                  | +                   |
| Mean Slope                               | -                   |
| Soil Hydraulic Conductivity              | -                   |
| Percent High-Intensity Development       | +                   |
| Percent Low-Intensity Development        | +                   |
| Percent Developed Open Space             | ~                   |

### Gulfwide Results of open space analysis

- Larger mean patch (AREA) sizes correspond with lower amounts of flood loss (p<.01)</li>
- Greater number of patches (NP) increase the amount of damage (p<.001) caused by floods at the watershed level.
- Unit increases in both PLAND (p<.05) and LPI (p<.001) result in major decreases in flood loss.
- Among landscape configuration metrics, both GYRATE (p<.01) and CONTIG (p<.05) reduce watershed-level flood losses.</li>
- The presence of palustrine wetlands appears to have a significant effect on reducing flood impacts.
- The study results also show that forest land cover can effectively reduce insured flood loss at the watershed level.

# **Coastal Resilience DS tool**



### maps.coastalresilience.org

# How can you use the Coastal Resilience tool?

Inform selection of restoration investments

•Raise awareness of the societal benefits of coastal restoration

•Engage communities interested in reducing their flood insurance premiums through the Community Rating System



### "Building Coastal Resilience" Workshops



#### Using Coastal Resilience 2.0 to support decision making in Coastal Communities



#### www.maps.coastalresilience.org



Visualizing coastal impacts, planning wisely for the future, and making smart choices today

## www.coastalresilience.org

Chris Shepard cshepard@tnc.org

