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Wood once was 
common in 
streams across the 
United States and 
isolated examples 
can still can be 
found in many. 

Escambia River, Florida
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Stress Partitioning

τ0 =  τgrains + τbed + τbanks + τwood

1913 photo, possibly Queets or Quinault River, WA
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Stress partitioning considering only LWD and grain roughness

ρCBU2 +  ρCDA(H/2L) U2 =  ρghs
τGS τLWD τo

CB = drag coefficient for the bed
CDA = wood drag coefficient = CD/(1-B)2

U    = flow velocity
h     = water depth

total energy 
available

energy acting 
on substrate

energy acting 
on wood

Adapted from Manga and Kirchner 2000

S     = energy slope
B     = blockage coefficient = H/h
H     = diameter of LWD
L      = spacing of LWD
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Bed particle size distribution

D50 of bed decreased almost 5 fold after ELJs were installed.   
D50(before) = 90 mm,  D50 (after) = 19 mm

Engineered logjams lower shear stress available for 
sediment transport, reducing grain size of bed material

Before Wood

After Wood

Elwha River, WA
Abbe et al. 2004
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Reducing substrate 
grain size can 
change channel 
planform

(adapted from Eaton et al. 2010)
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Logjams in the Red River, LA created a 
complex mosaic of bayous with lakes 50 
km long.  After logjams were removed the 
channel cut down five meters and most of 
these backwaters disappeared.  

Caddo Lake, the largest natural 
lake in Texas, is formed by a 700 
year old logjam

Wood 
removal 

simplified 
thousands  

of rivers 
(images here 

from 
Willamette 
River, OR)
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Increasing roughness 
reduces velocities, 
raises water 
elevations and stores 
more water, 
increasing habitat in 
the treatment area 
and reducing
downstream flood 
peaks.
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Queets River, 2003

Wood:  size and shape

Channel: substrate and confinement

What variables matter most?“A close study of conditions shows that in every instance the 
current was first deflected by an accumulation of drift, the 
huge timber of this section serving readily in its formation.
… Gravel, sand, and silt collect in the dead water, behind the 
drift piles, strengthening them and preventing the river from 
returning to its original bed.  Evidences of this action are 
plentiful….”

- from H.H. Wolff  (1916) 
(describing the White River draining Mt Rainier, WA)



We no longer have the riparian trees we once had
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The Senator Bald Cypress, 
Florida

Fremont Cottonwood, 
Arizona

American Sycamore, 
Indiana

Western Red 
Cedar, 

Washington
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The Solution:
Engineered logjams offer 
means of re-introducing 
wood to rehabilitate 
ecosystems, control channel 
incision, store more water 
within the channel network, 
and attenuate flood peaks

The Problem:
Loss of wood and big 
trees, channelization, 
development

Sullivan Creek engineered logjams Pend Orielle County, WA
Natural Systems Design, 2014
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