Southeast Environmental **Research Center**

GASEOUS CARBON EMISSIONS (METHANE AND CARBON DIOXIDE) FROM WETLAND SOILS IN A RE-CREATED EVERGLADES LANDSCAPE

Bradley R. Schonhoff^{1,2}, Leonard J. Scinto^{1,2}, Alexandra Serna^{1,2}, Eric Cline³, Thomas Dreschel³, and Fred Sklar³ ¹Southeast Environmental Research Center, Florida International University, Miami, FL

²Department of Earth & Environment, Florida International University, Miami, FL

Okeechobe

³South Florida Water Management District, Everglades Systems Assessment Section, West Palm Beach, FL

Carbon, Climate Change, and the Florida Everglades

- Increasing methane (CH_4) and carbon dioxide (CO_2) emissions represent a global environmental issue.
- Wetlands (especially peatlands) are recognized as important components in the global carbon cycle, for both sequestration and emission potential.
- Over the last 130 years, land development and agriculture have severely impacted the Everglades.
- As part of restoration efforts, increasing water inputs to Everglades soils can stall decomposition and reduce CO₂ emissions, but increase CH₄ emissions.

Greenhouse Gases (GHGs) and Global Warming Potential (GWP)

EXPRESSED AS PARTS PER BILLION (ppb)

Methanogenesis in Wetlands Study Site Flooded soils \rightarrow saturation (pore spaces filled). Loxahatchee South Florida Impoundment Under anaerobic (low-oxygen) conditions, further Landscape decomposition leads to CH₄ production, as anaerobic microbes break down organic materials. Assessment (LILA) Large-scale N₂O emission CH, emission physical model Elevation gradient important for flooding, and CH₄ production AMOUNT OF GAS IN ATMOSPHERE AS

Objectives

Figure 1. LILA Hydrograph with Sampling Events

Fig. 3: CH₄ Concentrations Across Sites

- To quantify emission rates for CH₄ and CO₂ under prolonged wet and dry conditions in a recreated, peat-based Everglades wetland with varying topographic features; tree island, ridge and slough.
- To determine the effects of water levels and elevation on overall CH₄ and CO₂ emissions.
- To compare CO_2/CH_4 emission ratios across five main Everglades landscape components.

Hypotheses

- Areas of lower elevation and therefore higher water levels over longer periods – were predicted to exhibit the highest concentrations of CH₄ (as anaerobic conditions lead to CH₄ production).
- The highest CO₂ concentrations were expected to occur at the highest elevations, which experience the least flooding (and the greatest exposure).
- CO_2/CH_4 ratios were likewise hypothesized to be highest at higher elevations.

Fig. 4: CO₂ Concentrations Across Sites

Fig. 5: CH_4/CO_2 Ratios, with GWP markers

Fig. 6: Average CO₂ Efflux Rates (LICOR)

35

17

GWP: CH_4 72x more effective than CO_2 (20 years)

Date

Discussion

Fig. 7: Statistical Correlations

Statistical Correlations (Pearson 2-tailed) N = 271			
	LILA Stage	Inundation (cm)	Days Flooded
Redox (mV)	405***	168 ^{**}	.218 ^{**}
	.000	.006	.000
CH4 umol L-1	.425**	.376 ^{**}	.047
	.000	.000	.445
CO2 mmol L-1	.420***	.205 ^{**}	1 26 [*]
	.000	.001	.038
CO2/CH4 ratrio	440***	415 ^{**}	177**
	.000	.000	.003
*. Significant at the 0.05 level.**. **. Significant at the 0.01 leve			t the 0.01 level.

Flooding influenced the production of both CH_4 and CO_2 in this re-created Everglades landscape.

- Significant differences were found primarily between the two end-points along the elevation gradient; between the Tree Island Head High and the Deep Slough sites (Figure 3).
- Flooding and drying had an inverse relationship with average CO₂ efflux rates (Figure 6).
- Stage (water levels), Inundation (depth of flooding), and Days Flooded correlated as expected with Redox Potentials, CH_4 and CO_2 concentrations, and CO_2/CH_4 ratios (Figure 7).
- The average CO_2/CH_4 ratio across all sites within a macrocosm: 22 (mol:mol). Given the GWP of each GHG, CH_4 had a disproportionately greater impact than CO_2 , for at least a 100-year span.

REFERENCES Charman, D.J., 2002. Peatlands and Environmental Change. John Wiley and Sons Limited, Chichester.

ACKNOWLEDGEMENTS

Dr. Tom Dreschel, Dr. René Price, and Dr. John Kominoski.

Thanks to Eric Cline and the South Florida Water

Management District, Dr. Alexandra Serna and Diana

Johnson with the FIU Freshwater Biogeochemistry lab.

Gorham, E. 1991. Role in the carbon cycle and probable responses to climatic warming. Ecol. Apps 1. Light, S.S., Dineen, J.W., 1997. Water Control in the Everglades: A Historical Perspective. In: Davis, S.M., Ogden, J.C., Eds. Everglades: the ecosystem and its restoration. Boca Raton (FL): St. Lucie Press. pp 47–84. McVoy, C.W., Said, W.P., Obeysekeran, J., Arman, J.V., Dreschel, T.W., 2011. Landscapes and Hydrology of the Pre-Drainage Everglades. Gainesville, FL: University Press of Florida. Reddy, K.R., & DeLaune, R.D., 2008. *Biogeochemistry of Wetlands*. CRC Press, Boca Raton, FL. United States Environmental Protection Agency (US EPA), 2014. Climate Change, Greenhouse Gas Emission Data. Retrieved from: http://epa.gov/climatechange/ghgemissions/