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SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Challenge:
Everglades Yesterday and Today

Ratural Arvas

[ [ A [ [

Pre-drainage Boundary

Current Flow




Nutrient (Phosphorus) Enrichment
Cattall Expansion
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Nutrient (Phosphorus) Enrichment
Cattall Expansion
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Figure 1. A location map of Water Conservation Area 2A situated in south Florida. Inflow struc- CATTAIL SPARSE MIX
tures are noted as S7, S10A, $108B, S10C, S10D, and S10E. s OTHER
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Comprehensive Everglades
Restoration plan (CERP)

Everglades Forever Act of 1994 requires
phosphorus delivery rate concentrations of 10
ppb in next 5-10 years.

Comprehensive Everglades Restoration plan
(CERP).

Restoration Coordination And Verification (RECOVER)
Links science and the tools of science for system-wide planning
evaluation and assessment.

Provides the scientific basis for meeting the overall objectives of
the CERP

Provides the scientific basis for plan performance , and refinement
during implementation.



Regional Adaptive Assessment
Tools For the Florida Everglades

Everglades Landscape Model (ELM)

Integrates hydrology, biology, and nutrient cycling in a spatially explicit
simulation

Across Trophic level System Simulation
(ATLSS)

Integrated system of simulation models representing the biotic
community of the Everglades region

Spatially explicit (500 m x 500m)

Use in combination with monitoring data at subregional level



Electromagnetic Spectrum
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Absorbed And Transmitted Energy in the

Electromagnetic Spectrum
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Light Reflected From Vegetation
Canopy
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Vegetation and Remote Sensing

« Analysis for vegetation
applications depends
on reflectance

| properties | el : | Sp eCtraI
Analysis

pigments structure water, cellulose, lignin

in general are due to:

— Chemical composition
(e.g., pigments)

— Structure (e.g., leaf
structure)

Roflactance {Oftast for clarity)

& ITT  Visual Information Solutions Vegetation and Remote Sensing - SWIR

« Water — absorptions in
NIR and SWIR
—1.9,14, 119, .97

= micrometers
eg etatlon — Necessary in
photosynthesis, reduces
burn likelihood
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Spectral Analysis — VVegetation Stress Indicators

9.2 What field spectra at canopy level reveal
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Figure 9.2: Medtian reflectance curves of 27 slatmarsh vegetation types i the visible
part of the spectrum from 530 nm to 700 nm (a), and the absorption curves of plant
pigments (b) (source: Purves et al. (1998))
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» Pigments biggest effect
— Chorophyll most important

N A . 3
| ‘I = ) At~ Caroteng]
+Chiorophyll-b i

\

Wavelengih (um) Wayelength (ym)

Images from Earth Observation Center Universiti Kebangsaan Malaysia

Y

Visual Information Solutions




Spectral’ Analysis
Vegetation Stress Indicators

Vegetation Spectral Signature Vegetation and Remote Sensing — Near Infrared

« Changes in vegetation signature due to health or

spec]es dlfference . Healthy Ieaf Structure Incident Energy Reflected Energy
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Transect Field Acquisition for Biomass
Spectral Signature Library Development

Spectral Resolution - Landsat TM vs. Lab Spectrometer

Visible NIR SWIR1 SWIR2

Landsat Thematic
Mapper

Figure 1. Non-destructive, field collection of vegetation biomass
along transects for remote sensing algorithm development and
evaluation.
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Figure 3. A library of South Florida land cover spectra is being built
using handheld and laboratory spectroscopy.




Spectral Biomass Analysis

Typha (Cattail)

Sigma 0({dB)

Speactral Reflectank
XENEEE

Sigma 0 {dB)

Mean above ground biomass (Mg [ ha)




Everglades Blomass

Ratio Vegetation Index
Nomalized Difterence Vegetaton Index

Nitrogen Reflectance Index

Table 2, Examples of vegetation indices,

Acronym Formmla

AT NRR®D

NOVI  (NR-RED)(NR+ RED)
M (NIRIGREEN) (NTR/GREENe

Correlation

Biomass

Plat height, biomass, yield

Nitrogen status of corn
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AVIRIS
Airborne HyperSpectral Sensor
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Hyper Spectral Water Quality Analysis

Sakonnet River, Rl Sakonnet River, RI
Narragansett Bay AVIRIS Data Collection

July 11, 1998

Narragansett Bay AVIRIS Data Collection

July 11, 1998
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LINKAGE MODEL
(Water Quality, Geochemistry, Remote Sensing)

Pre-Eutrophication Eutrophication Post-Eutrophication
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Modeling Parameters |e— Ung:e Spectral Earametets < *Remote Sensing
a, DOC, SM, Turbidity «Water Sampling
*Emperical Correlations
*Mathematical Models
L Water Quality Modeling Parameters | Data Collection
Cla, NH;, N,, DO, BOD, P,, Temperature N
*Water Sampling
Predictive
Models
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Neuse River Hyperspectral \Water
Quality Analysis

Cl=ug/L, Phos.,DO=mg/L, pt
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Correlation of Field Chemistry and
Hyperspectral Imagery

Fielo Chemistry Hyperspectral Measurement
Tannin + Lignan (T+L) DOC
[ Suspended Minerals + Chl + DOC
Chlorophyll a Ch
TSS-Chi{T+L) Suspended Minerals
TSS (Attenuated) Turbidity (HSSR)
Secchi Depth Depth (if < VSSR)




Nutrient (Phosphorus) Enrichment
Cattail Geochemistry Spectral Process

Absorption is entered around 0.65 Neuse River, NC.: Shallow Sam ples
Hm (visible red) and controlled by %

pigment in green-leaf chloroplast 25

residing in outer leaf (Carotene and 5

xanthophyll pigments absorb blue 10

light and reflect green and red

light).

Strong reflectance between 0.7 and
1.0 um (near IR) in the spongy
mesophyll cells located in the
interior or back of leaf.

In HIS AVIRIS CHI analysis CHI
peaks shift from 6956 nm at 20 mg/|
o 710 nm at 200mg/| in channels
36, 37, and 38.

Stable isotopes O, N-NO3, H, C
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NASA EOCAP RESEARCH PROJECT
Hyperspectral Image - Algae Potential Production Index
(APPI) Map from Chla Measurements

The Neuse River, North Carolina
July 1999
. high algae potential
Yellow areas:moderate algae potential

Black areas : low algae potential

Source: NASA EOCAP, 1999



Hyperspectral Imagery
Airborne Acquisition
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Areas of Coverage

*Soil: Inundated

(dormant)

www.spectir.com end Lo end hyperspectral solutions

www.spectir.com end Lo end hyperspectral solutions

USACE Spectroscopy - Gulf Oil and Potomac River Water Test
June 201
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LIDAR Return Signal

l“‘:’! Laser
|

umination

KNM
Active (lidar/radar) cloud remote sensing

Return Signal
Wavetom
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Lidar

Multiple Retumn
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Besared Poves | Last Return_ Multiple Return |
- Distance Distance 3
Difference in returns is a function of particle size !!

Think LASER as a small footprint beam of high return intensity.
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LIDAR Biomass Mapping
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RADAR BANDS

P Band - Wavelengtht of 30-100 cm frequency of 0.3 GHz
Longest RADAR wavelength, strongest correlation to
vegetation biomass.

L Band - Wavelenght of 15-30 cm frequency of 1-2 GHz
Use onboard SEASAT, JERS-1 and NASA systems.

S Band - Wavelenght of 8-15 cm frequency of 2-4 GHz
Requires a large antenna. Not easily attenuated.

C Band - Wavelenght of 4-8 cm frequency of 4-8 GHz
Weakest correlation to vegetation biomass.

X Band - Wavelenght of 2.5-4 cm frequency of 8-12 GHz
The lowest dynamic range to vegetative biomass.

KBand - Wavelenght of 0.75-1.2 cm frequency of 1.7-2.5 GHz
Use in early radar applications but uncommon today.



RADAR Spectral Signal
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RADAR Signal Return

@ CCRS [ CCT

Source: Canada Centre For remote sensing

The Synthetic Aperture Radar (SAR) backscatter coefficient
(sigma-0) is a complex function of local characteristics including
topography, geological composition, soil moisture and salinity,
and vegetation density and structure.

Think RADAR image as dependent on wavelength, frequency,
and polarization (Orientation of electric field)
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Principal . Principal . Principal
Component 1 Component 2 Component 3

South Florida Wetland Hydropattern Maps

Southern Florida 1997 - 1998 ERS SAR
RGB Prmcnpal Component Color Composnte

May 25, 1988 SAR-Derived Hydropattern Image August 23, 1999 S
copvrlqht ESA 1997-1998
 Flooded (> 15 cm) Wet Soil {< 1 Soil Mossture)
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Depth of Water Spectral Analysis

s Water penetration with LiDAR, HIS and RADAR

Light penetration in an aqueous environment is limited to the visible and

near infrared wavelength range that extends from approximately 400-
850 nm for standard spectral analysis.

With LIDAR, HIS and RADAR (SWIR, LWIR, Microwave)

o Emergents can be detected at depths of 1 to 1.8 meters

o Sub-emergents can be detected at depths of 0.6 to 2.4 meters

o Some macrophytes can be detected below depths of 3 to 4 meters
o Above and below ground biomass can be detected and qualified by

type of geochemical impact.



Hyperspectral Spectral Analysis
Water Depth Penetration

Hyperion SNR

Radiometric performance mode] based
on 60° Solar zemth angle, 30% albeda,
standard scene
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New Remote Sensing
Technology Paradign
for
Water Quality Monitoring and Ecosystem
Assessment and Restoration

= CLOUD COMPUTING
= NANO TECHNOLOGY
= SENSOR FUSION



IS a model for enabling ubiguitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers
and storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort

or service provider (Wikepedia)

Application

Collaboration

Platform _
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The Experimental Advanced
Airborne Research LIDAR (EAARL)

I = Intensity
t =time

; 1. A relatively short 1.3 ns laser pulse
v 2. A radically narrowed receiver field-
| of-view (1.5-2 mrad)

3. Digitized signal temporal backscatter
amplitude waveforms

4. Software as opposed to hardware
implementation of real-time signal
processing

NAVDSS Elevation (m)

Normalized Backscatter (counts)

Figure 2. Normalized Backscatter



NASA EAARL System Specifications

Total system weight:

Maximum power requirement:
Nominal surveying altitude:
Raster scan rate:

Laser sample per raster:
Swath width at 300 m altitude:

Sample spacing:

Area surveyed per hour; (300 m altitude, 50 m/s)
Nominal power required:

Tlluminated laser spot diameter on the surface:
Nominal ranging accuracy:

Nominal horizontal positioning accuracy:

Digitizer temporal resolution;

Minimum water depth:

Maximum measurable water depth:

250 Ibs.

28 VDC at 24 amps
.300 m AGL

>97 knots (50 m/s)
.25 rasters/second

240m

Swath center=2%2m

Swath edges =2x4m

43 km” per haur

400 Watts
20 cm
3-5cm

<1m

1 nanosecond (13.9 cm in air, 11.3 cm in water)

30 cm

26m

(EAARL) Specifications

(EAARL) Example in
South Florida

FLORIDA
KEYS

NAVD88 (m)
i Hion: 0
—_—

ey Low:-105



SENSOR FUSION: Nutrient (Phosphorus) Enrichment
and Impacted Biomass Determination

LiDAR is sensitive to leaf biomass material and better suited for
under story biomass determination.

RADAR is sensitive to structural features and better suited for
hardwood/woody species biomass determination.

RADAR penetration into the vegetation canopy and the dry/wet
medium is dependent on the wavelength, polarization, and
incidence angle.

» The incidence angle determines the amount of vegetation

illuminated, and the polarization determines the type of
interaction with the vegetation and its medium (above or below
the surface).



SENSOR FUSION: Nutrient (Phosphorus) Enrichment
and Impacted Biomass Determination

= Pollutant absorption through pigment in green-
leaf chloroplast residing in outer leaf.

s Geochemical reactio of spongy mesophyll cells
located in the interior or back of leaf.
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LIDAR/RADAR Biomass Data

Real Data example
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