

SUPPORTING CHESAPEAKE BAY RESTORATION BY MODELING NUTRIENT AND SEDIMENT SOURCES AND TRANSPORT

Applications and Results of SPARROW Models

John W. Brakebill jwbrakeb@usgs.gov Scott W. Ator swator@usgs.gov Joel D. Blomquist jdblomqu@usgs.gov

Chesapeake Bay Watershed

PENNSYLVA

Chesapeake

Watershed

VIRGINIA

- Drains the largest estuary in North America
- Stresses led to the Bay and its tidal rivers being listed as "impaired waters" under the Clean Water Act
 - Largely because of low dissolved oxygen levels and other problems related to pollution like excessive nutrients and sediment
 - Imposed TMDL throughout watershed
- Restoration efforts have been ongoing for several decades.
- Challenges:
 - Diverse and changing land uses
 - Variety of contaminant sources
 - Diverse natural conditions relevant to contaminant fate and transport
- Restoration efforts have been designed and supported using numerical models:
 - Chesapeake Bay Program HSPF watershed model
 - TMDL's implemented and managed
 - USGS SPARROW
 - Help gain a comprehensive understanding of where nutrients and sediment originate
 - How they move throughout the watershed
 - Assist management actions

science for a changing world

<u>SPARROW</u>

<u>SPA</u>tially <u>R</u>eferenced <u>R</u>egressions <u>On Watershed Attributes</u>

- Spatial Statistical Approach that Empirically Relates Contaminant Sources and Transport Factors to Measured Stream Flux
 - Identify the spatial variability and magnitude of contaminant supply
 - Quantify the contributions at various locations
 - Identify the factors affecting transport
- Tool Provides Spatially Detailed Predictions:
 - Map individual contaminant sources in unmonitored locations
 - Statistical importance and quantification of contaminant sources
 - Provides measures of uncertainty

Spatial Framework

- Explicit for evaluating geographic distribution of sources and the factors affecting flux
- Potential Geographic Targeting for intensive study, increased monitoring, or management practice evaluation/implementation (BMP)

SPARROW Spatially Designed

Integrates spatial data over multiple scales to predict origin & fate of contaminants

Network of connected and attributed streams and watersheds

Slope, Physiography, Soil Characteristics, Reservoir Systems

Source data

<u>SPARROW</u>

National and Regional Modeling

- 1) Contiguous U.S.
- 2) Upper and Lower Mississippi River Basin
- 3) USGS NAWQA Major River Basin Studies

USGS State Science Center Projects

Revised Sept. 2004

- New England and Mid-Atlantic
- South Atlantic-Gulf and Tennessee
- Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy
- Missouri
- Lower Mississippi, Arkansas-White-Red, and Texas-Gulf
- Rio Grande, Colorado, and Great Basin
- Pacific Northwest
- California

Northeastern US SPARROW

- Provides broader context of how Chesapeake compares to wider region
- Similar calibration to Chesapeake models:
 - TN and TP
 - Early 2000s
 - 1:100,000 scale
 - Slightly different source and transport specification
- September release
 - Online tool for customized mapping and reporting of SPARROW results and scenario testing

Moore et al., in press JAWRA

Chesapeake Bay SPARROW Models

- Previous models:
 - Late 1980s (TN, TP)
 - Early 1990s (TN, TP)
 - Late 1990s (TN, TP)
 - Early 2000s (sediment)
- Updated models:
 - Early 2000s (TN,TP)
 - Finer spatial resolution
 - More calibration stations
 - Updated sources and expanded transport specification

Scale	Water- sheds	Mean Size (km²)
1:500,000	2,734	75
1:100,000	80,579	2.1

Nitrogen SPARROW

- Sources: On average:
 - 1,090 kg/km² of N from Urban areas reach the stream
 - 24% of N from fertilizer and fixation reaches streams
 - Only 6% of N in manure reaches streams
 - 27% of N from atmospheric deposition reaches streams

RMSE=0.2892, R²=0.9784, yieldR²=0.8580 N = 181

Nitrogen Model	Estimate	р			
Sources					
Point sources (kg/yr)	0.774	0.0008			
Jrban land (km²)	1090	<0.0001			
Fertilizer/fixation (kg/yr)	0.237	<0.0001			
Vanure (kg/yr)	0.058	0.0157			
Wet atmospheric (kg/yr)	0.267	<0.0001			
Land to Water Transport					
_n(mean evi)	-1.70	0.0039			
_n(mean soil AWC)	-0.829	0.0016			
_n(GW recharge (mm))	0.707	<0.0001			
_n (% Piedmont carb)	0.158	0.0018			
Aquatic Decay					
Small streams (<122 cfs)	0.339	0.0118			
_g Streams, T > 18.5 C	0.153	0.0030			
_g Streams, T< 15.0 C	0.013	0.431			
mpoundments	5.93	0.0424			

Nitrogen SPARROW

Fate and transport:

- Delivery to streams is greater in areas of greater groundwater flow, particularly in the Piedmont carbonate
- Delivery to streams is less in areas with reducing conditions or greater plant uptake
- In-stream losses are greater in smaller streams
- In-stream losses in larger streams are greater in warmer areas
- Losses in impoundments are likely due mainly to denitrification

RMSE=0.2892, R²=0.9784, yieldR²=0.8580 N = 181

Nitrogen Model	Estimate	р			
Sources					
Point sources (kg/yr)	0.774	0.0008			
Urban land (km ²)	1090	<0.0001			
Fertilizer/fixation (kg/yr)	0.237	<0.0001			
Manure (kg/yr)	0.058	0.0157			
Wet atmospheric (kg/yr)	0.267	<0.0001			
Land to Water Transport					
Ln(mean evi)	-1.70	0.0039			
Ln(mean soil AWC)	-0.829	0.0016			
Ln(GW recharge (mm))	0.707	<0.0001			
Ln (% Piedmont carb)	0.158	0.0018			
Aquatic Decay					
Small streams (<122 cfs)	0.339	0.0118			
Lg Streams, T > 18.5 C	0.153	0.0030			
Lg Streams, T< 15.0 C	0.013	0.431			
Impoundments	5.93	0.0424			

Spatial Distribution of TN

Nitrogen Source Shares

 Agriculture is widespread, and a dominant sources of N to the Bay and most tributaries

Phosphorus SPARROW

- On average, less than 5% of applied P in fertilizer and manure reaches streams
- Urban areas yield 49 kg/km²
- Natural mineral sources are significant
- Delivery to streams is greater where runoff is more likely and in the Coastal Plain, possibly due to legacy applications or saturation
- Significant losses occur in impoundments

RMSE=0.4741R²=0.9510yieldR²=0.7300N = 184

Spatial Distribution of TP

Phosphorus Source Shares

 TP from urban (including point sources) and agricultural sources are roughly equivalent
 Natural mineral sources represent about 14 percent of TP sources

Suspended Sediment SPARROW

- Sediment yields (export coefficient) are greatest from areas of urban development (represented by an increase in impervious surface) ~4,000 kg/km²
- Agriculture contributes less by unit area, but is widespread and a significant source of sediment to local streams and Chesapeake Bay
- In-stream sources (bank, bed, or flood plain erosion) are also significant in small streams above the Fall Line
- Upland sediment transport to streams is enhanced in areas with greater slope, fewer reservoirs, less permeable soils, and in the Piedmont
- Significant losses occur in impoundments and large Coastal Plain streams

RMSE=0.96
R ² =0.83
yieldR ² =0.57
N = 129

		i		
Sediment Model Variable	Estima	ite	р	
Sources				
Agriculture Area (km ²)		56.96	< 0.001	
Forested Area (km ²)		0.98	0.495	
Developed lands (km ²)	3	,928.41	0.004	
Stream Channel < 35 ft ³ /sec		.029	0.030	
Land to Water Transport				
Watershed Slope		0.01	0.083	
Soil Permeability		-1.19	0.022	
Piedmont Province		0.96	0.002	
Off Reach Impoundment density		-22.96	0.021	
Aquatic Decay				
Impoundments (m/yr)		234.91	0.034	
CP Streams (120 – 250 ft ³ /sec) Day ⁻¹		2.54	0.007	
CP Streams (> 250 ft ³ /sec) Day ⁻¹		1.92	0.14	

Published in Brakebill et al., 2010, JAWRA, 1:500,000 stream network

Applications – Individual sediment source contributions

Sediment Source

Shares

Incremental

(local) sources

 how much sediment is generated in each catchment?

Source Share (%)	Mean	Median
Agriculture	62	74
Urban Development	26	14
Forest	5	3
Small streams	7	0

* Forest mapped 1 order of magnitude less than other sources

Small Streams

Application – Quantifying Sediment Supply

Sediment Source Distribution By Physiography

Application – Quantifying Sediment Supply

Delivery to the Bay Sediment Source Distribution

- Quantified amounts of each sediment source transported to the Bay
- Can be quantified and mapped at any location on the network

Source	Flux (10 ⁶ Mg/ye	ear)
Agriculture	51%	1.50
Urban Development	39%	1.16
Forest	08%	0.25
Small Streams	02%	0.05
TOTAL		2.96

Applications – Geographic targeting

Incremental Yield

Modified from Brakebill et al., 2010, JAWRA

Delivered Yield

Applications – Geographic targeting

- Additional information required?
- Ability to look at each source individually
 - Is sediment yield related to urbanization?
 - Is sediment yield related to agriculture?
- Other sources?
- Other factors?

Upper Monocacy River Basin

Applications

- Applying the SPARROW model provides the ability to gain a regional understanding of contaminant supply, fate, and transport within the Chesapeake Bay watershed
 - The SPARROW model demonstrates reasonable relations between the response variable (long-term water-quality conditions) and selected exploratory data representing supply, transport, and storage (Model diagnostics).
- Model evaluations and predictions are directly applicable to nutrient and sediment management in watersheds of estuaries like Chesapeake Bay:
 - Identifying individual source contributions and their relative importance
 - Identifying important transport factors and their relative importance
 - Quantifying relative amounts of sediment generated and transported to Chesapeake Bay
 - Enhanced geographic targeting tool for further study, additional monitoring, or prioritizing management actions for a variety of sources and settings
- Seeking out and working with State and Local agencies to better provide information suited for their needs

Information

- 2002 North East Nitrogen and Phosphorus SPARROW models
 - September. 2011
 - 1:100,000 scale
 - JAWRA
 - Online tool (DSS) for customized mapping and reporting of SPARROW results and scenario testing
- 2002 Chesapeake Bay Nitrogen and Phosphorus SPARROW models
 - Last quarter, 2011
 - 1:100,000 scale
 - USGS SIR Report (including predictions)
 - Also available in DSS (soon after publication) for customized mapping and reporting of SPARROW results and scenario testing
- 2002 Chesapeake Bay Suspended Sediment model Published
 - 1:500,000 scale
 - JAWRA
 - http://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2010.00450.x/abstract

Thank You

- jwbrakeb@usgs.gov
- 443-498-5557

SPARROW Mass-Balance Model

Nonlinear regression

Phosphorus

- Denver et al. (2010) suggested crystalline and siliciclastic rocks may represent a natural mineral P source:
 - Alkili-feldpars
 - Fluor-apatite
 - Fe-hydroxides
- Model coefficients generally agree with previous estimates of P yields
- Natural mineral sources dominate TP yields over large areas

Estimated Yield (kg/km²/yr)

Nitrogen

 Nitrogen yields from agricultural sources are greatest in the Lancaster, PA area