Integrating Delta Building Physics and Economics: Optimizing Engineered Avulsions in the Mississippi Delta

Melissa A. Kenney, Benjamin F. Hobbs

The Johns Hopkins University

David Mohrig

University of Texas

Gary Parker

University of Illinois

with input from Wonsuck Kim, Hongtai Huang, Jeffrey Nitrrouer, and Chris Paola

National Center for Earth-surface Dynamics A NSF Science & Technology Center

Motivation: Land Loss in lower delta since 1932

"Most of the Mississippi Delta, some 10,000 square miles, lies less than 3 feet above sea level. Beset by land subsidence and rising sea levels, much of this vast area will inexorably sink beneath the waters by the end of this century."

- Bruce Babbitt, Washington Post, 5/18/2007

Sediment Lost to the Deep Gulf

There are a lot of proposed solutions, but... What Engineered Single or Portfolio of Avulsions Gives you the Biggest Bang for your Buck? Deep & Costly *vs.* Shallow & Cheap?

e.g.,Old River Control Structure

West Bay

Source: http://en.wikipedia.org/wiki/File:Old_River_Control_Structure_Complex.jpg http://www.mvn.usace.army.mil/prj/westbay/photos/West-Bay-Sediment.gif

Multi-Box Culvert Engineered Avulsion

More Sand at Depth

Data: Nittrouer et al. WRR, in press

Dynamic Delta Top: Area is set by a balance between: Sea-level rise + Subsidence and deposition of

sediment & organic

matter

Results of Land building Model : BASE CASE (Parker, Kim, Mohrig, Paola & Twilley, AAAS 2008)

$$(\dot{H} + \sigma) A_{top} = f_r Q_s + r_{org} A_{top}$$

2110

ShorelineFan AreaBarataria Bay:15.7 km386.7 km²Breton Sound:18.4 km530.9 km²

Sea-Level Rise: 2 mm/yr Subsidence: 5 mm/yr Fraction of Water Diverted: 0.45 Guide channels: 5 km each

Cost Function

	Depth D (m)	Width W (m)	Cost (2010\$)
Bonnet Carre	7.62	2330	481,000,000
Caernarvon Diversion	7.32	57	46,300,000
Davis Pond	7.92	74	129,000,000
Old River	19.51	425	989,000,000
West Bay	2.44	170	5,920,000

Cost (2010\$M) = 0.427D^{1.634} W^{.487}

 $R^2 = .997$

Single Project: Cost of Land Building

(Exponential Function)

Optimal Project Portfolio

Given: 45% Water Diversion Limit;

W Scale Economies, D Scale Diseconomies

^{*}Provides bulk of land

Bathymetry: Single Project Shows Scale Diseconomies in Land Building as f(Sand Diverted)

Scale Conclusions

- If water diversion limited to 45% of flood flow, can build 700 km² after 50 years
- For smaller amounts of land (100-200 km²):
 - Shallow projects can be most efficient
 - Water diversion limits not binding
- For largest amounts (700 km²):
 - Deep & costly avulsions preferred
 - Sand concentrations at depth outweigh lower cost of shallow avulsions
 - Especially when diverting maximum allowed total water
 - Usually several narrower projects preferred
 - Large project results in less land per unit sand diverted due to bathemetry
 - 2-5 deep, narrower projects best for land for nearly all cases
 - Exception: if strong W economies and exponential sand, then 1 deep, wide project best

Summary

- Land is a function of water, sediment, and time
- Cost is a function of the diversion depth and width deeper diversions are more expensive
- Scale tradeoffs:
 - Scale economies:
 - Wider avulsions are cheaper per unit of width
 - Deeper gives more sand per unit water
 - Scale diseconomies:
 - Deeper is more expensive per unit depth
 - More sand results in less land per unit of sand
- On balance, to maximize land building, a portfolio should include <u>multiple projects including at least</u> <u>one deep project</u> because of slope of bed, water constraints
- Caveat: Analysis considers generic cost and sediment functions, not site specific conditions

Thank you!

Melissa A. Kenney kenney@jhu.edu

National Center for Earth-surface Dynamics A NSF Science & Technology Center